Andrew Maier
University of Cincinnati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Maier.
Biochemical Pharmacology | 2000
Alvaro Puga; Andrew Maier; Mario Medvedovic
We have used a high density microarray hybridization approach to characterize the transcriptional response of human hepatoma HepG2 cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We find that exposure to 10 nM TCDD for 8 hr alters by at least a factor of 2.1 the expression of 310 known genes and of an equivalent number of expressed sequence tags. Treatment with TCDD in the presence of 20 microg/mL of cycloheximide blocked the effect on 202 of these genes, allowing us to distinguish between primary effects of TCDD exposure, which take place whether cycloheximide is present or not, and secondary effects, which are blocked by inhibition of protein synthesis. Of the 310 known genes affected by TCDD, 30 are up-regulated and 78 are down-regulated regardless of cycloheximide treatment, and 84 are up-regulated and 118 are down-regulated only when protein synthesis is not inhibited. Functional clustering of genes regulated by TCDD reveals many potential physiological interactions that might shed light on the multiple biological effects of this compound. Our results, however, suggest that arriving at a sound understanding of the molecular mechanisms governing the biological outcome of TCDD exposure promises to be orders of magnitude more complicated than might have been previously imagined.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2002
Andrew Maier; Brenda L. Schumann; Xiaoqing Chang; Glenn Talaska; Alvaro Puga
Co-exposures to complex mixtures of arsenic and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) are common in the environment. These two environmental pollutants are carcinogenic, but the nature of their molecular interactions in the induction of cancer is not well understood. Additive or synergistic interactions have been proposed to explain why arsenic, which is not a potent mutagen itself, is comutagenic with a variety of DNA-damaging agents. We have examined the genotoxicity of BaP-arsenic mixtures. We find that exposure of mouse hepatoma Hepa-1 cells to low concentrations of arsenite increases BaP-DNA adduct levels by as much as 18-fold. This effect requires the activation of BaP by cytochrome p450 1A1 (CYP1A1), although arsenite does not alter BaP-inducible CYP1A1 enzymatic activity, suggesting that arsenite acts downstream of metabolic BaP activation. Glutathione homeostasis was important in modulating the potency of arsenite. In cells depleted of reduced glutathione, arsenite increased BaP-DNA adduct formation by an even greater degree than in cells co-treated with BaP and arsenite in control medium. Although arsenic comutagenicity has been attributed to inhibition of DNA repair, arsenite treatment did not alter adduct removal kinetics in BaP-treated cells, suggesting that mechanisms upstream of DNA repair are responsible for increased adduct levels. Concentrations of arsenite and BaP that had no measurable mutagenic effect alone, increased mutation frequency at the Hprt locus by eight-fold when given in combination, demonstrating a comutagenic response between BaP and arsenite. These results provide strong support for the positive interaction between arsenic and PAH-induced cancer observed in epidemiology studies, and help to identify additional mechanistic steps likely to be involved in arsenic comutagenesis.
Encyclopedia of Toxicology (Second Edition) | 2005
Andrew Maier
Occupational exposure limits (OELs) provide health and safety professionals an important tool for protecting worker health. OELs provide health and safety guidance to chemical users, inform workers of potential adverse effects of chemical exposure, and provide a scientific basis for evaluating whether existing environmental exposure controls are adequate. Many organizations around the world develop OELs using approaches that fit the unique needs of the constituencies involved and the mission of the organization. For example, some organizations set health-based guidelines that reflect best scientific judgment regardless of other considerations, while many regulatory organizations evaluate policy and management issues such as implementation costs and technical feasibility as part of the OEL determination. Nevertheless, the general scientific approach used by most organizations is similar and includes a detailed critical review of the epidemiology and toxicology information to identify potential hazards, selection of sensitive adverse effects, dose-response estimation to determine appropriate thresholds, and an evaluation of tenant uncertainties to ensure the desired margin of safety. There are several general categories of OELs for airborne chemical exposure, which differ primarily on the duration of exposure considered relevant for preventing the effect of concern. The common OEL duration categories include:
Toxicology | 2002
Alvaro Puga; Jennifer Marlowe; Sonya J. Barnes; Ching-Yi Chang; Andrew Maier; Zongqing Tan; J. Kevin Kerzee; Xaoqing Chang; Matt Strobeck; Erik S. Knudsen
One of the most puzzling aspects of the biological impact of polycyclic aromatic hydrocarbon compounds is that they elicit an apparently unrelated variety of toxic, teratogenic, and carcinogenic responses in exposed animals and in humans. At the cellular level, these environmental toxicants affect cell cycle regulatory mechanisms and signal transduction pathways in ways that are equally diverse and often contradictory. For example, depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, to terminal differentiation, or to apoptosis. These effects are mediated by the aryl hydrocarbon receptor, a ligand-activated transcription factor well known for its regulatory activity on the expression of several phase I detoxification cytochrome P450 genes. Research into the molecular mechanisms of aryl hydrocarbon receptor function has uncovered a novel role for this protein during cell cycle progression. The activated receptor acts as an environmental sensor and cell cycle checkpoint that commits cells exposed to adverse environmental stimuli to arrest before the onset of DNA replication.
Molecular Carcinogenesis | 2000
Andrew Maier; Timothy P. Dalton; Alvaro Puga
Recent work suggesting that cellular oxidative stress exerts an inhibitory effect on aromatic hydrocarbon receptor (AHR)–dependent gene expression led us to test the hypothesis that pro‐oxidant environmental pollutants might alter the induction of detoxification genes by 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD), an AHR ligand. We found that, in mouse hepatoma Hepa‐1 cells, TCDD‐inducible cytochrome P450, Cyp1a1, and nicotinamide adenine dinucleotide phosphate–quinone oxidoreductase (Nqo1) mRNA accumulation were differentially affected by cadmium (Cd2+), chromium (Cr6+), and arsenic (As3+). Cadmium or arsenic did not change Cyp1a1 mRNA levels but did enhance TCDD‐inducible levels of Nqo1 mRNA, an effect that paralleled the ability of these metals to activate a β‐galactosidase gene reporter system regulated by an electrophile response promoter element. Chromium inhibited mRNA accumulation for both Cyp1a1 and Nqo1. Manipulation of cellular thiol status did not modify the response to combined chromium‐TCDD exposure, suggesting that the response was not caused by oxidative stress. Chromium did not block DNA‐binding competence of the AHR and did not have an effect on mRNA stability, but it inhibited Cyp1a1 gene transcription and the expression of an AHR‐dependent luciferase reporter. These data indicate that coexposure to pro‐oxidant metals and AHR ligands, which is common in the environment, can disrupt the regulation of phase I and phase II detoxification genes, leading to imbalances in gene expression that may have important consequences for the toxicity of complex mixtures. Mol. Carcinog. 28:225–235, 2000.
Environmental Health Perspectives | 1996
Glenn Talaska; Patricia Underwood; Andrew Maier; Joellen Lewtas; Nathaniel Rothman; Marlene Jaeger
Lung cancer caused by polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental agents is a major problem in industrialized nations. The high case-fatality rate of the disease, even with the best supportive treatment, underscores the importance of primary lung cancer prevention. Development of biomarkers of exposure and effects to PAHs and related compounds is now underway and includes measurement of urinary metabolites of specific PAHs as well as detection of protein and DNA adducts as indicators of effective dose. Validation of these markers in terms of total environmental dose requires that concurrent measures of air levels and potential dermal exposure be made. In addition, the interrelationships between PAH biomarkers must be determined, particularly when levels of the marker in surrogate molecules (e.g., protein) or markers from surrogate tissues (e.g., lymphocyte DNA) are used to assess the risk to the target organ, the lung. Two approaches to biomarker studies will be reviewed in this article: the progress made using blood lymphocytes as surrogates for lung tissues and the progress made developing noninvasive markers of carcinogen-DNA adduct levels in lung-derived cells available in bronchial-alveolar lavage and in sputum. Data are presented from studies in which exfoliated urothelial cells were used as a surrogate tissue to assess exposure to human urinary bladder carcinogens in occupational groups.
Biological Trace Element Research | 1998
Michael Dourson; Andrew Maier; Bette Meek; A.G. Renwick; Edward V. Ohanian; Kenneth A. Poirier
Boron, which is ubiquitous in the environment, causes developmental and reproductive effects in experimental animals. This observation has led to efforts to establish a Tolerable Intake value for boron. Although risk assessors agree on the use of fetal weight decreases observed in rats as an appropriate critical effect, consensus on the adequacy of toxicokinetic data as a basis for replacement of default uncertainty factors remains to be reached. A critical analysis of the existing data on boron toxicokinetics was conducted to clarify the appropriateness of replacing default uncertainty factors (10-fold for interspecies differences and 10-fold for intraspecies differences) with data-derived values.The default uncertainty factor for variability in response from animals to humans of 10-fold (default values of 4-fold for kinetics and 2.5-fold for dynamics) was recommended, since clearance of boron is 3-to 4-fold higher in rats than in humans and data on dynamic differences—in order to modify the default value—are unavailable. A data-derived adjustment of 6-fold (1.8 for kinetics and 3.1 for dynamics) rather than the default uncertainty factor of 10-fold was considered appropriate for intrahuman variability, based on variability in glomerular filtration rate during pregnancy in humans and the lack of available data on dynamic differences. Additional studies to investigate the toxicokinetics of boron in rats would be useful to provide a stronger basis for replacement of default uncertainty factors for interspecies variation.
Environmental Health Perspectives | 1998
Andrew Maier; Jana Micka; Kevin Miller; Timothey Denko; Ching-Yi Chang; Daniel W. Nebert; Alvaro Puga
Differential CYP1A1 inducibility, reflecting variations in aromatic hydrocarbon receptor (AHR) affinity among inbred mouse strains, is an important determinant of environmental toxicity. We took advantage of the Ahr polymorphism in C57BL/6 and DBA/2 mice to develop an oligonucleotide-hybridization screening approach for the rapid identification of DNA sequence differences between Ahr alleles. Oligonucleotides containing single-base changes at polymorphic sites were immobilized on a solid support and hybridized with C57BL/6 or DBA/2 AHR cDNA radiolabeled probes. The observed hybridization patterns demonstrate that this approach can be used to detect nucleotide differences in the Ahr coding region with very high accuracy. In parallel experiments, we used a yeast two-hybrid system to assess phenotypic differences in AHR function. AHR activation, as measured by beta-galactosidase reporter activity in Saccharomyces cerevisiae strain SFY526, was determined following treatment with varying doses of the AHR ligand beta-naphthoflavone (BNF). We found that the C57BL/6 AHR has about a 15-fold higher affinity for BNF than the DBA/2 AHR, in much better agreement with results reported for whole-animal studies than the values observed by in vitro ligand-binding assays. Using C57BL/6 and DBA/2 AHR chimeric proteins, we also confirmed the previously reported observation that an A375V change is principally responsible for the high- to low-affinity AHR phenotype. There has been no straightforward method to reliably and reproducibly phenotype large numbers of humans for CYP1A1 inducibility or AHR affinity. Screening human AHR cDNAs by oligonucleotide-hybridization and yeast two-hybrid methodologies will be invaluable for the rapid and unequivocal determination of changes in DNA sequence and receptor-ligand affinities associated with human AHR polymorphisms. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5
Journal of Occupational and Environmental Hygiene | 2015
D. A. Dankovic; Bruce D. Naumann; Andrew Maier; Michael Dourson; L. S. Levy
The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties—typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has the benefit of increasing the transparency of occupational exposure limit derivation. Improved characterization of the scientific basis for uncertainty factors has led to increasing rigor and transparency in their application as part of the overall occupational exposure limit derivation process.
Journal of Occupational and Environmental Hygiene | 2015
Deveau M; Chen Cp; Gunnar Johanson; Krewski D; Andrew Maier; Niven Kj; Ripple S; Paul A. Schulte; Silk J; Urbanus Jh; David M. Zalk; Richard W. Niemeier
Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably—reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist.