Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew N. Macintyre is active.

Publication


Featured researches published by Andrew N. Macintyre.


Journal of Immunology | 2011

Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets

Ryan D. Michalek; Valerie A. Gerriets; Sarah R. Jacobs; Andrew N. Macintyre; Nancie J. MacIver; Emily F. Mason; Sarah A. Sullivan; Amanda G. Nichols; Jeffrey C. Rathmell

Stimulated CD4+ T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4+ T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.


Cell | 2015

Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses

Ping Chih Ho; Jessica D. Bihuniak; Andrew N. Macintyre; Matthew Staron; Xiaojing Liu; Robert A. Amezquita; Yao Chen Tsui; Guoliang Cui; Goran Micevic; Jose C. Perales; Steven H. Kleinstein; E. Dale Abel; Karl L. Insogna; Stefan Feske; Jason W. Locasale; Marcus Bosenberg; Jeffrey C. Rathmell; Susan M. Kaech

Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca(2+)-NFAT signaling and effector functions by repressing sarco/ER Ca(2+)-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.


Cell Metabolism | 2014

The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function

Andrew N. Macintyre; Valerie A. Gerriets; Amanda G. Nichols; Ryan D. Michalek; Michael C. Rudolph; Divino Deoliveira; Steven M. Anderson; E. Dale Abel; Benny J. Chen; Laura P. Hale; Jeffrey C. Rathmell

CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are uncertain. Despite expression of multiple glucose transporters, Glut1 deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1 deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased Teff survival and differentiation. Importantly, Glut1 deficiency decreased Teff expansion and the ability to induce inflammatory disease in vivo. Treg cells, in contrast, were enriched in vivo and appeared functionally unaffected and able to suppress Teff, irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival.


Journal of Biological Chemistry | 2014

Metabolic Reprogramming of Macrophages GLUCOSE TRANSPORTER 1 (GLUT1)-MEDIATED GLUCOSE METABOLISM DRIVES A PROINFLAMMATORY PHENOTYPE

Alex J. Freemerman; Amy R. Johnson; Gina N. Sacks; J. Justin Milner; Erin L. Kirk; Melissa A. Troester; Andrew N. Macintyre; Pankuri Goraksha-Hicks; Jeffery Rathmell; Liza Makowski

Background: GLUT1 is the main glucose transporter in certain immune cells. Results: Overexpressing GLUT1 in macrophages results in increased glucose uptake and glucose utilization. Conclusion: Driving glucose uptake and metabolism through GLUT1 induces a proinflammatory response that is dependent upon glycolysis and reactive oxygen species. Significance: Understanding how macrophage substrate metabolism impacts inflammation is crucial to develop novel therapeutics for obesity and diabetes. Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance.


Journal of Clinical Investigation | 2015

Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation

Valerie A. Gerriets; Rigel J. Kishton; Amanda G. Nichols; Andrew N. Macintyre; Makoto Inoue; Olga Ilkayeva; Peter S. Winter; Xiaojing Liu; Bhavana Priyadharshini; Marta E. Slawinska; Lea Haeberli; Catherine Huck; Laurence A. Turka; Kris C. Wood; Laura P. Hale; Paul Smith; Martin A. Schneider; Nancie J. MacIver; Jason W. Locasale; Christopher B. Newgard; Mari L. Shinohara; Jeffrey C. Rathmell

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.


Cancer Research | 2011

Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition.

Jonathan L. Coloff; Andrew N. Macintyre; Amanda G. Nichols; Tingyu Liu; Catherine A. Gallo; David R. Plas; Jeffrey C. Rathmell

Most cancer cells utilize aerobic glycolysis, and activation of the phosphoinositide 3-kinase/Akt/mTOR pathway can promote this metabolic program to render cells glucose dependent. Although manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly understood. Here, we examined the role and metabolic regulation of the antiapoptotic Bcl-2 family protein Mcl-1 in cell death upon inhibition of Akt-induced aerobic glycolysis. In the presence of adequate glucose, activated Akt prevented the loss of Mcl-1 expression and protected cells from growth factor deprivation-induced apoptosis. Mcl-1 associated with and inhibited the proapoptotic Bcl-2 family protein Bim, contributing to cell survival. However, suppression of glucose metabolism led to induction of Bim, decreased expression of Mcl-1, and apoptosis. The proapoptotic Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, shows clinical promise, but Mcl-1 upregulation can promote resistance. Importantly, inhibition of glucose metabolism or mTORC1 overcame Mcl-1-mediated resistance in diffuse large B cell leukemic cells. Together these data show that Mcl-1 protein synthesis is tightly controlled by metabolism and that manipulation of glucose metabolism may provide a mechanism to suppress Mcl-1 expression and sensitize cancer cells to apoptosis.


Oncogene | 2011

Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis.

Brian J. Altman; Sarah R. Jacobs; Emily F. Mason; Ryan D. Michalek; Andrew N. Macintyre; Jonathon L. Coloff; Olga Ilkayeva; Wei Jia; You-Wen He; Jeffrey C. Rathmell

Hematopoietic cells normally require cell extrinsic signals to maintain metabolism and survival. In contrast, cancer cells can express constitutively active oncogenic kinases such as BCR-Abl that promote these processes independent of extrinsic growth factors. When cells receive insufficient growth signals or when oncogenic kinases are inhibited, glucose metabolism decreases and the self-digestive process of autophagy is elevated to degrade bulk cytoplasm and organelles. Although autophagy has been proposed to provide a cell-intrinsic nutrient supply for mitochondrial oxidative metabolism and to maintain cellular homeostasis through degradation of damaged organelles or protein aggregates, its acute role in growth factor deprivation or inhibition of oncogenic kinases remains poorly understood. We therefore developed a growth factor-dependent hematopoietic cell culture model in which autophagy can be acutely disrupted through conditional Cre-mediated excision of the autophagy-essential gene Atg3. Treated cells rapidly lost their ability to perform autophagy and underwent cell cycle arrest and apoptosis. Although Atg3 was essential for optimal upregulation of mitochondrial oxidative pathways in growth factor withdrawal, this metabolic contribution of autophagy did not appear critical for cell survival, as provision of exogenous pyruvate or lipids could not completely rescue Atg3 deficiency. Instead, autophagy suppressed a stress response that otherwise led to p53 phosphorylation and upregulation of p21 and the pro-apoptotic Bcl-2 family protein Puma. Importantly, BCR-Abl-expressing cells had low basal levels of autophagy, but were highly dependent on this process, and rapidly underwent apoptosis upon disruption of autophagy through Atg3 deletion or treatment with chemical autophagy inhibitors. This dependence on autophagy extended in vivo, as Atg3 deletion also prevented BCR-Abl-mediated leukemogenesis in a cell transfer model. Together these data demonstrate a critical role for autophagy to mitigate cell stress, and that cells expressing the oncogenic kinase BCR-Abl appear particularly dependent on autophagy for cell survival and leukemogenesis.


PLOS ONE | 2014

Metabolic Reprogramming towards Aerobic Glycolysis Correlates with Greater Proliferative Ability and Resistance to Metabolic Inhibition in CD8 versus CD4 T Cells

Yilin Cao; Jeffrey C. Rathmell; Andrew N. Macintyre

T lymphocytes (T cells) undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.


Cancer and Metabolism | 2013

Activated lymphocytes as a metabolic model for carcinogenesis

Andrew N. Macintyre; Jeffrey C. Rathmell

Metabolic reprogramming is a key event in tumorigenesis to support cell growth, and cancer cells frequently become both highly glycolytic and glutamine dependent. Similarly, T lymphocytes (T cells) modify their metabolism after activation by foreign antigens to shift from an energetically efficient oxidative metabolism to a highly glycolytic and glutamine-dependent metabolic program. This metabolic transition enables T cell growth, proliferation, and differentiation. In both activated T cells and cancer cells metabolic reprogramming is achieved by similar mechanisms and offers similar survival and cell growth advantages. Activated T cells thus present a useful model with which to study the development of tumor metabolism. Here, we review the metabolic similarities and distinctions between activated T cells and cancer cells, and discuss both the common signaling pathways and master metabolic regulators that lead to metabolic rewiring. Ultimately, understanding how and why T cells adopt a cancer cell-like metabolic profile may identify new therapeutic strategies to selectively target tumor metabolism or inflammatory immune responses.


Molecular Cell | 2011

PKM2 and the Tricky Balance of Growth and Energy in Cancer

Andrew N. Macintyre; Jeffrey C. Rathmell

In this issue of Molecular Cell, Lv et al. (2011) identify a novel feedback mechanism in which increased glycolysis induces the acetylation and chaperone-mediated autophagic degradation of the glycolytic regulator PKM2, revealing a novel metabolic feedback loop that drives tumor growth.

Collaboration


Dive into the Andrew N. Macintyre's collaboration.

Top Co-Authors

Avatar

Jeffrey C. Rathmell

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Dale Abel

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge