Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda G. Nichols is active.

Publication


Featured researches published by Amanda G. Nichols.


Journal of Immunology | 2011

Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets

Ryan D. Michalek; Valerie A. Gerriets; Sarah R. Jacobs; Andrew N. Macintyre; Nancie J. MacIver; Emily F. Mason; Sarah A. Sullivan; Amanda G. Nichols; Jeffrey C. Rathmell

Stimulated CD4+ T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4+ T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.


Cell Metabolism | 2014

The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function

Andrew N. Macintyre; Valerie A. Gerriets; Amanda G. Nichols; Ryan D. Michalek; Michael C. Rudolph; Divino Deoliveira; Steven M. Anderson; E. Dale Abel; Benny J. Chen; Laura P. Hale; Jeffrey C. Rathmell

CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are uncertain. Despite expression of multiple glucose transporters, Glut1 deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1 deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased Teff survival and differentiation. Importantly, Glut1 deficiency decreased Teff expansion and the ability to induce inflammatory disease in vivo. Treg cells, in contrast, were enriched in vivo and appeared functionally unaffected and able to suppress Teff, irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival.


Journal of Clinical Investigation | 2015

Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation

Valerie A. Gerriets; Rigel J. Kishton; Amanda G. Nichols; Andrew N. Macintyre; Makoto Inoue; Olga Ilkayeva; Peter S. Winter; Xiaojing Liu; Bhavana Priyadharshini; Marta E. Slawinska; Lea Haeberli; Catherine Huck; Laurence A. Turka; Kris C. Wood; Laura P. Hale; Paul Smith; Martin A. Schneider; Nancie J. MacIver; Jason W. Locasale; Christopher B. Newgard; Mari L. Shinohara; Jeffrey C. Rathmell

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation

Ryan D. Michalek; Valerie A. Gerriets; Amanda G. Nichols; Makoto Inoue; Dmitri Kazmin; Ching-Yi Chang; Mary A. Dwyer; Erik R. Nelson; Kristen N. Pollizzi; Olga Ilkayeva; Vincent Giguère; William J. Zuercher; Jonathan D. Powell; Mari L. Shinohara; Donald P. McDonnell; Jeffrey C. Rathmell

Stimulation of resting CD4+ T lymphocytes leads to rapid proliferation and differentiation into effector (Teff) or inducible regulatory (Treg) subsets with specific functions to promote or suppress immunity. Importantly, Teff and Treg use distinct metabolic programs to support subset specification, survival, and function. Here, we describe that the orphan nuclear receptor estrogen-related receptor-α (ERRα) regulates metabolic pathways critical for Teff. Resting CD4+ T cells expressed low levels of ERRα protein that increased on activation. ERRα deficiency reduced activated T-cell numbers in vivo and cytokine production in vitro but did not seem to modulate immunity through inhibition of activating signals or viability. Rather, ERRα broadly affected metabolic gene expression and glucose metabolism essential for Teff. In particular, up-regulation of Glut1 protein, glucose uptake, and mitochondrial processes were suppressed in activated ERRα−/− T cells and T cells treated with two chemically independent ERRα inhibitors or by shRNAi. Acute ERRα inhibition also blocked T-cell growth and proliferation. This defect appeared as a result of inadequate glucose metabolism, because provision of lipids, but not increased glucose uptake or pyruvate, rescued ATP levels and cell division. Additionally, we have shown that Treg requires lipid oxidation, whereas Teff uses glucose metabolism, and lipid addition selectively restored Treg—but not Teff—generation after acute ERRα inhibition. Furthermore, in vivo inhibition of ERRα reduced T-cell proliferation and Teff generation in both immunization and experimental autoimmune encephalomyelitis models. Thus, ERRα is a selective transcriptional regulator of Teff metabolism that may provide a metabolic means to modulate immunity.


Journal of Immunology | 2014

Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells

Alfredo Caro-Maldonado; Ruoning Wang; Amanda G. Nichols; Masayuki Kuraoka; Lillian D. Sun; Amanda L. Gavin; E. Dale Abel; Garnett Kelsoe; Douglas R. Green; Jeffrey C. Rathmell

B cell activation leads to proliferation and Ab production that can protect from pathogens or promote autoimmunity. Regulation of cell metabolism is essential to support the demands of lymphocyte growth and effector function and may regulate tolerance. In this study, we tested the regulation and role of glucose uptake and metabolism in the proliferation and Ab production of control, anergic, and autoimmune-prone B cells. Control B cells had a balanced increase in lactate production and oxygen consumption following activation, with proportionally increased glucose transporter Glut1 expression and mitochondrial mass upon either LPS or BCR stimulation. This contrasted with metabolic reprogramming of T cells, which had lower glycolytic flux when resting but disproportionately increased this pathway upon activation. Importantly, tolerance greatly affected B cell metabolic reprogramming. Anergic B cells remained metabolically quiescent, with only a modest increase in glycolysis and oxygen consumption with LPS stimulation. B cells chronically stimulated with elevated BAFF, however, rapidly increased glycolysis and Ab production upon stimulation. Induction of glycolysis was critical for Ab production, as glycolytic inhibition with the pyruvate dehydrogenase kinase inhibitor dichloroacetate sharply suppressed B cell proliferation and Ab secretion in vitro and in vivo. Furthermore, B cell–specific deletion of Glut1 led to reduced B cell numbers and impaired Ab production in vivo. Together, these data show that activated B cells require Glut1-dependent metabolic reprogramming to support proliferation and Ab production that is distinct from T cells and that this glycolytic reprogramming is regulated in tolerance.


Cancer Research | 2011

Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition.

Jonathan L. Coloff; Andrew N. Macintyre; Amanda G. Nichols; Tingyu Liu; Catherine A. Gallo; David R. Plas; Jeffrey C. Rathmell

Most cancer cells utilize aerobic glycolysis, and activation of the phosphoinositide 3-kinase/Akt/mTOR pathway can promote this metabolic program to render cells glucose dependent. Although manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly understood. Here, we examined the role and metabolic regulation of the antiapoptotic Bcl-2 family protein Mcl-1 in cell death upon inhibition of Akt-induced aerobic glycolysis. In the presence of adequate glucose, activated Akt prevented the loss of Mcl-1 expression and protected cells from growth factor deprivation-induced apoptosis. Mcl-1 associated with and inhibited the proapoptotic Bcl-2 family protein Bim, contributing to cell survival. However, suppression of glucose metabolism led to induction of Bim, decreased expression of Mcl-1, and apoptosis. The proapoptotic Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, shows clinical promise, but Mcl-1 upregulation can promote resistance. Importantly, inhibition of glucose metabolism or mTORC1 overcame Mcl-1-mediated resistance in diffuse large B cell leukemic cells. Together these data show that Mcl-1 protein synthesis is tightly controlled by metabolism and that manipulation of glucose metabolism may provide a mechanism to suppress Mcl-1 expression and sensitize cancer cells to apoptosis.


Nature Immunology | 2016

Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression

Valerie A. Gerriets; Rigel J. Kishton; Marc O. Johnson; Sivan Cohen; Peter J. Siska; Amanda G. Nichols; Marc O. Warmoes; Aguirre A. de Cubas; Nancie J. MacIver; Jason W. Locasale; Laurence A. Turka; Andrew D. Wells; Jeffrey C. Rathmell

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Radiation Research | 2015

HIF-1 Alpha Regulates the Response of Primary Sarcomas to Radiation Therapy through a Cell Autonomous Mechanism

Minsi Zhang; Qiong Qiu; Zhizhong Li; Mohit Sachdeva; Hooney Min; Diana M. Cardona; Thomas F. DeLaney; Tracy Han; Yan Ma; Lixia Luo; Olga Ilkayeva; Ki Lui; Amanda G. Nichols; Christopher B. Newgard; Michael B. Kastan; Jeffrey C. Rathmell; Mark W. Dewhirst; David G. Kirsch

Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy. While hypoxia increases tumor cell survival after radiation exposure because there is less oxygen to oxidize damaged DNA, it remains unclear whether signaling pathways triggered by hypoxia contribute to radiation resistance. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance. To clarify the role of HIF-1α in regulating tumor response to radiation, we generated a novel genetically engineered mouse model of soft tissue sarcoma with an intact or deleted HIF-1α. Deletion of HIF-1α sensitized primary sarcomas to radiation exposure in vivo. Moreover, cell lines derived from primary sarcomas lacking HIF-1α, or in which HIF-1α was knocked down, had decreased clonogenic survival in vitro, demonstrating that HIF-1α can promote radiation resistance in a cell autonomous manner. In HIF-1α-intact and -deleted sarcoma cells, radiation-induced reactive oxygen species, DNA damage repair and activation of autophagy were similar. However, sarcoma cells lacking HIF-1α had impaired mitochondrial biogenesis and metabolic response after irradiation, which might contribute to radiation resistance. These results show that HIF-1α promotes radiation resistance in a cell autonomous manner.


European Journal of Immunology | 2016

Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity.

Valerie A. Gerriets; Keiko Danzaki; Rigel J. Kishton; William Eisner; Amanda G. Nichols; Donte C. Saucillo; Mari L. Shinohara; Nancie J. MacIver

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg‐cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition‐associated hypoleptinemia and T cell‐specific leptin receptor knockout suppressed Teff‐cell number, function, and glucose metabolism, but did not alter Treg‐cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting‐induced hypoleptinemia altered Teff‐cell, but not Treg‐cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF‐1α, a key regulator of Th17 differentiation and Teff‐cell glucose metabolism, and found HIF‐1α expression was decreased in T cell‐specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell‐intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.


Journal of Biological Chemistry | 2017

Metabolic alterations contribute to enhanced inflammatory cytokine production in Irgm1-deficient macrophages

Elyse A. Schmidt; Brian E. Fee; Stanley C. Henry; Amanda G. Nichols; Mari L. Shinohara; Jeffrey C. Rathmell; Nancie J. MacIver; Jörn Coers; Olga Ilkayeva; Timothy R. Koves; Gregory A. Taylor

The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.

Collaboration


Dive into the Amanda G. Nichols's collaboration.

Top Co-Authors

Avatar

Jeffrey C. Rathmell

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge