Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Osborne is active.

Publication


Featured researches published by Andrew Osborne.


Brain | 2014

Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome

Thomas V. Johnson; Nicholas W. DeKorver; Victoria A. Levasseur; Andrew Osborne; Alessia Tassoni; Barbara Lorber; Janosch P. Heller; Rafael Villasmil; Natalie D. Bull; Keith R. Martin; Stanislav I. Tomarev

The development of neuroprotective strategies to attenuate retinal ganglion cell death could lead to novel therapies for chronic optic neuropathies such as glaucoma. Intravitreal transplantation of mesenchymal stem cells slows retinal ganglion cell death in models of optic nerve injury, but the mechanism of action remains unclear. Here we characterized the neuroprotective effects of mesenchymal stem cells and mesenchymal stem cell-derived factors in organotypic retinal explant culture and an in vivo model of ocular hypertensive glaucoma. Co-culture of rat and human bone marrow-derived mesenchymal stem cells with retinal explants increased retinal ganglion cell survival, after 7 days ex vivo, by ∼2-fold and was associated with reduced apoptosis and increased nerve fibre layer and inner plexiform layer thicknesses. These effects were not demonstrated by co-culture with human or mouse fibroblasts. Conditioned media from mesenchymal stem cells conferred neuroprotection, suggesting that the neuroprotection is mediated, at least partly, by secreted factors. We compared the concentrations of 29 factors in human mesenchymal stem cell and fibroblast conditioned media, and identified 11 enriched in the mesenchymal stem cell secretome. Treatment of retinal explants with a cocktail of these factors conferred retinal ganglion cell neuroprotection, with factors from the platelet-derived growth factor family being the most potent. Blockade of platelet-derived growth factor signalling with neutralizing antibody or with small molecule inhibitors of platelet-derived growth factor receptor kinase or downstream phosphatidylinositol 3 kinase eliminated retinal ganglion cell neuroprotection conferred by mesenchymal stem cell co-culture. Intravitreal injection of platelet-derived growth factor -AA or -AB led to profound optic nerve neuroprotection in vivo following experimental induction of elevated intraocular pressure. These data demonstrate that mesenchymal stem cells secrete a number of neuroprotective proteins and suggest that platelet-derived growth factor secretion in particular may play an important role in mesenchymal stem cell-mediated retinal ganglion cell neuroprotection. Furthermore, platelet-derived growth factor may represent an independent target for achieving retinal ganglion cell neuroprotection.


Journal of Biological Chemistry | 2000

Studies with substrate and cofactor analogues provide evidence for a radical mechanism in the chorismate synthase reaction.

Andrew Osborne; Roger N. F. Thorneley; Chris Abell; Stephen Bornemann

Chorismate synthase catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate. The strict requirement for a reduced FMN cofactor and atrans-1,4-elimination are unusual. (6R)-6-Fluoro-EPSP was shown to be converted to chorismate stoichiometrically with enzyme-active sites in the presence of dithionite. This conversion was associated with the oxidation of FMN to give a stable flavin semiquinone. The IC50 of the fluorinated substrate analogue was 0.5 and 250 μm with the Escherichia coli enzyme, depending on whether it was preincubated with the enzyme or not. The lack of dissociation of the flavin semiquinone and chorismate from the enzyme appears to be the basis of the essentially irreversible inhibition by this analogue. A dithionite-dependent transient formation of flavin semiquinone during turnover of (6S)-6-fluoro-EPSP has been observed. These reactions are best rationalized by radical chemistry that is strongly supportive of a radical mechanism occurring during normal turnover. The lack of activity with 5-deaza-FMN provides additional evidence for the role of flavin in catalysis by the E. coli enzyme.


British Journal of Ophthalmology | 2011

The development of human organotypic retinal cultures (HORCs) to study retinal neurodegeneration

Nuwan Niyadurupola; P. Sidaway; Andrew Osborne; D. C. Broadway; Julie Sanderson

Aims To develop human organotypic retinal cultures (HORCs) to study retinal ganglion cell (RGC) death in response to ischaemic and excitotoxic insults, both known to cause loss of RGCs and proposed as mechanisms involved in glaucomatous retinal neurodegeneration. Methods Human donor eyes were obtained within 24 h post mortem. The retina was isolated and explants cultured using two techniques. THY-1 mRNA (assessed by real-time quantitative PCR) and neuronal nuclei (NeuN) (assessed by immunohistochemistry) were used as markers of RGCs. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Results The distribution of THY-1 mRNA and NeuN-labelling within the human retina was consistent with the expected distribution of RGCs. Gross morphology and retinal architecture remained stable over a 96 h culture period. THY-1 mRNA and NeuN-labelled RGC layer cells decreased over the culture period, and there was an increase in TUNEL-labelling with time, but HORCs cultured in serum-free DMEM/HamF12 medium were useful for up to 48 h in culture. N-methyl-d-aspartate (10 μM) caused a reduction in THY-1 mRNA by 24 h and decreased the numbers of NeuN-labelled RGC layer neurons by 48 h, suggesting that the loss of THY-1 mRNA was a marker of RGC stress prior to death. Simulated ischaemia (60 min oxygen/glucose deprivation) caused a reduction at 24 h in both THY-1 mRNA and the numbers of NeuN-labelled neurons of HORCs. Conclusion HORCs provide a useful model to investigate RGC insult by neurodegenerative mechanisms that may lead to glaucoma in human eyes.


Journal of Biological Chemistry | 2003

Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-L-tryptophan.

Andrew Osborne; Quincy Teng; Edith Wilson Miles; Robert S. Phillips

1-15N-l-Tryptophan (1-15N-l-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with l-serine, catalyzed by tryptophan synthase. 1-15N-l-Trp was complexed with wild-type tryptophan synthase and β-subunit mutants, βK87T, βD305A, and βE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium α-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-l-Trp bound to the β-active site. No 15N-HSQC signal was detected for 1-15N-l-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-l-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-l-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium α-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of βK87T and βE109D mutant Trp synthase with 1-15N-l-Trp showed a similar cross peak either in the presence or absence of disodium α-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the βD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium α-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium α-glycerophosphate but was able to form a closed conformation in the presence of disodium α-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-l-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of l-Trp with NaCl and/or disodium α-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria.


Stem Cells | 2015

Molecular Mechanisms Mediating Retinal Reactive Gliosis Following Bone Marrow Mesenchymal Stem Cell Transplantation

Alessia Tassoni; Alex Gutteridge; Amanda C. Barber; Andrew Osborne; Keith R. Martin

A variety of diseases lead to degeneration of retinal ganglion cells (RGCs) and their axons within the optic nerve resulting in loss of visual function. Although current therapies may delay RGC loss, they do not restore visual function or completely halt disease progression. Regenerative medicine has recently focused on stem cell therapy for both neuroprotective and regenerative purposes. However, significant problems remain to be addressed, such as the long‐term impact of reactive gliosis occurring in the host retina in response to transplanted stem cells. The aim of this work was to investigate retinal glial responses to intravitreally transplanted bone marrow mesenchymal stem cells (BM‐MSCs) to help identify factors able to modulate graft‐induced reactive gliosis. We found in vivo that intravitreal BM‐MSC transplantation is associated with gliosis‐mediated retinal folding, upregulation of intermediate filaments, and recruitment of macrophages. These responses were accompanied by significant JAK/STAT3 and MAPK (ERK1/2 and JNK) cascade activation in retinal Muller glia. Lipocalin‐2 (Lcn‐2) was identified as a potential new indicator of graft‐induced reactive gliosis. Pharmacological inhibition of STAT3 in BM‐MSC cocultured retinal explants successfully reduced glial fibrillary acidic protein expression in retinal Muller glia and increased BM‐MSC retinal engraftment. Inhibition of stem cell‐induced reactive gliosis is critical for successful transplantation‐based strategies for neuroprotection, replacement, and regeneration of the optic nerve. Stem Cells 2015;33:3006–3016


PLOS ONE | 2015

Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

Andrew Osborne; Amal Q Aldarwesh; Jeremy D. Rhodes; David C Broadway; Claire Everitt; Julie Sanderson

Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.


Stem Cells | 2018

Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells

Andrew Osborne; Julie Sanderson; Keith R. Martin

Optic neuropathies such as glaucoma occur when retinal ganglion cells (RGCs) in the eye are injured. Strong evidence suggests mesenchymal stem cells (MSCs) could be a potential therapy to protect RGCs; however, little is known regarding their effect on the human retina. We, therefore, investigated if human MSCs (hMSCs), or platelet‐derived growth factor (PDGF) as produced by hMSC, could delay RGC death in a human retinal explant model of optic nerve injury. Our results showed hMSCs and the secreted growth factor PDGF‐AB could substantially reduce human RGC loss and apoptosis following axotomy. The neuroprotective pathways AKT, ERK, and STAT3 were activated in the retina shortly after treatments with labeling seen in the RGC layer. A dose dependent protective effect of PDGF‐AB was observed in human retinal explants but protection was not as substantial as that achieved by culturing hMSCs on the retina surface which resulted in RGC cell counts similar to those immediately post dissection. These results demonstrate that hMSCs and PDGF have strong neuroprotective action on human RGCs and may offer a translatable, therapeutic strategy to reduce degenerative visual loss. Stem Cells 2018;36:65–78


Cell Death and Disease | 2016

Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism

Richard H. Foxton; Andrew Osborne; Keith R. Martin; Y-S Ng; David T. Shima

There is increasing evidence that VEGF-A antagonists may be detrimental to neuronal health following ocular administration. Here we investigated firstly the effects of VEGF-A neutralization on retinal neuronal survival in the Ins2Akita diabetic and JR5558 spontaneous choroidal neovascularization (CNV) mice, and then looked at potential mechanisms contributing to cell death. We detected elevated apoptosis in the ganglion cell layer in both these models following VEGF-A antagonism, indicating that even when vascular pathologies respond to treatment, neurons are still vulnerable to reduced VEGF-A levels. We observed that retinal ganglion cells (RGCs) seemed to be the cells most susceptible to VEGF-A antagonism, so we looked at anterograde transport in these cells, due to their long axons requiring optimal protein and organelle trafficking. Using cholera toxin B-subunit tracer studies, we found a distal reduction in transport in the superior colliculus following VEGF-A neutralization, which occurred prior to net RGC loss. This phenomenon of distal transport loss has been described as a feature of early pathological changes in glaucoma, Alzheimer’s and Parkinson’s disease models. Furthermore, we observed increased phosphorylation of p38 MAPK and downstream Hsp27 stress pathway signaling in the retinas from these experiments, potentially providing a mechanistic explanation for our findings. These experiments further highlight the possible risks of using VEGF-A antagonists to treat ocular neovascular disease, and suggest that VEGF-A may contribute to the maintenance and function of axonal transport in neurons of the retina.


Human Gene Therapy | 2018

DESIGN OF A NOVEL GENE THERAPY CONSTRUCT TO ACHIEVE SUSTAINED BRAIN-DERIVED NEUROTROPHIC FACTOR SIGNALLING IN NEURONS

Andrew Osborne; Aiden Xz Wang; Alessia Tassoni; Peter Widdowson; Keith R. Martin

Brain-derived neurotrophic factor (BDNF) acting through the tropomyosin-related receptor-B (TrkB) is an important signaling system for the maintenance and survival of neurons. Gene therapy using either recombinant adeno-associated virus (AAV) or lentiviral vectors can provide sustained delivery of BDNF to tissues where reduced BDNF signaling is hypothesized to contribute to disease pathophysiology. However, elevation in BDNF at target sites has been shown to lead to a downregulation of TrkB receptors, thereby reducing the effect of chronic BDNF delivery over time. A novel gene sequence has been designed coding both the ligand (BDNF) and the TrkB receptor in a single transgene separated by a short viral-2A sequence. The single transgene is efficiently processed intracellularly in vitro and in vivo to yield the two mature proteins, which are then independently transported to their final cellular locations: TrkB receptors to the cell surface, and BDNF contained within secretory vesicles. To accommodate the coding sequences of both BDNF and TrkB receptors within the narrow confines of the AAV vectors (4.7 kb pairs), the coding region for the pro-domain of BDNF was removed and the signal peptide sequence modified to improve production, intracellular transport, and secretion of mature BDNF (mBDNF). Intracellular processing and efficacy was shown in HEK293 cells and SH-SY5Y neuroblastoma cells using plasmid DNA and after incorporating the TrkB-2A-mBDNF into an AAV2 vector. Increased BDNF/TrkB-mediated intracellular signaling pathways were observed after AAV2 vector transfection while increased TrkB phosphorylation could be detected in combination with neuroprotection from hydrogen peroxide–induced oxidative stress. Correct processing was also shown in vivo in mouse retinal ganglion cells after AAV2 vector administration to the eye. This novel construct is currently being investigated for its efficacy in animal models to determine its potential to progress to human clinical studies in the future.


Stem Cells | 2017

Neuroprotective Effects Of Human Mesenchymal Stem Cells (hMSC) And Platelet Derived Growth Factor (PDGF) On Human Retinal Ganglion Cells (RGCs)

Andrew Osborne; Julie Sanderson; Keith R. Martin

Optic neuropathies such as glaucoma occur when retinal ganglion cells (RGCs) in the eye are injured. Strong evidence suggests mesenchymal stem cells (MSCs) could be a potential therapy to protect RGCs; however, little is known regarding their effect on the human retina. We, therefore, investigated if human MSCs (hMSCs), or platelet‐derived growth factor (PDGF) as produced by hMSC, could delay RGC death in a human retinal explant model of optic nerve injury. Our results showed hMSCs and the secreted growth factor PDGF‐AB could substantially reduce human RGC loss and apoptosis following axotomy. The neuroprotective pathways AKT, ERK, and STAT3 were activated in the retina shortly after treatments with labeling seen in the RGC layer. A dose dependent protective effect of PDGF‐AB was observed in human retinal explants but protection was not as substantial as that achieved by culturing hMSCs on the retina surface which resulted in RGC cell counts similar to those immediately post dissection. These results demonstrate that hMSCs and PDGF have strong neuroprotective action on human RGCs and may offer a translatable, therapeutic strategy to reduce degenerative visual loss. Stem Cells 2018;36:65–78

Collaboration


Dive into the Andrew Osborne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Sanderson

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda C. Barber

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Abell

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

David T. Shima

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge