Peter Widdowson
Oxford BioMedica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Widdowson.
Investigative Ophthalmology & Visual Science | 2013
Katie Binley; Peter Widdowson; Julie Loader; Michelle Kelleher; Sharifah Iqball; Georgina Ferrige; Jackie de Belin; Marie Carlucci; Diana Angell-Manning; Felicity Hurst; Scott Ellis; James Miskin; Alcides Fernandes; Paul Wong; Rando Allikmets; C. Bergstrom; Thomas M. Aaberg; Jiong Yan; Jian Kong; Peter Gouras; Annick Prefontaine; Mark Vezina; Martin Bussieres; Stuart Naylor; Kyriacos Mitrophanous
PURPOSE StarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photoreceptor-specific adenosine triphosphate (ATP)-binding cassette transporter (ABCA4) protein that is mutated in Stargardt disease (STGD1), a juvenile macular dystrophy. EIAV vectors are able to efficiently transduce rod and cone photoreceptors in addition to retinal pigment epithelium in the adult macaque and rabbit retina following subretinal delivery. The safety and biodistribution of StarGen following subretinal delivery in macaques and rabbits was assessed. METHODS Regular ophthalmic examinations, IOP measurements, ERG responses, and histopathology were carried out in both species to compare control and vector-treated eyes. Tissue and fluid samples were obtained to evaluate the persistence, biodistribution, and shedding of the vector following subretinal delivery. RESULTS Ophthalmic examinations revealed a slightly higher level of inflammation in StarGen compared with control treated eyes in both species. However, inflammation was transient and no overt toxicity was observed in StarGen treated eyes and there were no abnormal clinical findings. There was no StarGen-associated rise in IOP or abnormal ERG response in either rabbits or macaques. Histopathologic examination of the eyes did not reveal any detrimental changes resulting from subretinal administration of StarGen. Although antibodies to StarGen vector components were detected in rabbit but not macaque serum, this immunologic response did not result in any long-term toxicity. Biodistribution analysis demonstrated that the StarGen vector was restricted to the ocular compartment. CONCLUSIONS In summary, these studies demonstrate StarGen to be well tolerated and localized following subretinal administration.
PLOS ONE | 2014
Marisa Zallocchi; Katie Binley; Yatish Lad; Scott Ellis; Peter Widdowson; Sharifah Iqball; Vicky Scripps; Michelle Kelleher; Julie Loader; James Miskin; You Wei Peng; Weimin Wang; Linda Cheung; Duane Delimont; Kyriacos Mitrophanous; Dominic Cosgrove
Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.
Human Gene Therapy | 2012
Katie Binley; Peter Widdowson; Michelle Kelleher; Jackie de Belin; Julie Loader; Georgina Ferrige; Marie Carlucci; Margaret Esapa; Daniel Chipchase; Diana Angell-Manning; Scott Ellis; Kyriacos Mitrophanous; James Miskin; V. Bantseev; T. Michael Nork; Paul E. Miller; Stuart Naylor
RetinoStat(®) is an equine infectious anemia virus-based lentiviral gene therapy vector that expresses the angiostatic proteins endostatin and angiostatin that is delivered via a subretinal injection for the treatment of the wet form of age-related macular degeneration. We initiated 6-month safety and biodistribution studies in two species; rhesus macaques and Dutch belted rabbits. After subretinal administration of RetinoStat the level of human endostatin and angiostatin proteins in the vitreous of treated rabbit eyes peaked at ∼1 month after dosing and remained elevated for the duration of the study. Regular ocular examinations revealed a mild to moderate transient ocular inflammation that resolved within 1 month of dosing in both species. There were no significant long-term changes in the electroretinograms or intraocular pressure measurements in either rabbits or macaques postdosing compared with the baseline reading in RetinoStat-treated eyes. Histological evaluation did not reveal any structural changes in the eye although there was an infiltration of mononuclear cells in the vitreous, retina, and choroid. No antibodies to any of the RetinoStat vector components or the transgenes could be detected in the serum from either species, and biodistribution analysis demonstrated that the RetinoStat vector was maintained within the ocular compartment. In summary, these studies found RetinoStat to be well tolerated, localized, and capable of persistent expression after subretinal delivery.
Human Gene Therapy | 2018
Andrew Osborne; Aiden Xz Wang; Alessia Tassoni; Peter Widdowson; Keith R. Martin
Brain-derived neurotrophic factor (BDNF) acting through the tropomyosin-related receptor-B (TrkB) is an important signaling system for the maintenance and survival of neurons. Gene therapy using either recombinant adeno-associated virus (AAV) or lentiviral vectors can provide sustained delivery of BDNF to tissues where reduced BDNF signaling is hypothesized to contribute to disease pathophysiology. However, elevation in BDNF at target sites has been shown to lead to a downregulation of TrkB receptors, thereby reducing the effect of chronic BDNF delivery over time. A novel gene sequence has been designed coding both the ligand (BDNF) and the TrkB receptor in a single transgene separated by a short viral-2A sequence. The single transgene is efficiently processed intracellularly in vitro and in vivo to yield the two mature proteins, which are then independently transported to their final cellular locations: TrkB receptors to the cell surface, and BDNF contained within secretory vesicles. To accommodate the coding sequences of both BDNF and TrkB receptors within the narrow confines of the AAV vectors (4.7 kb pairs), the coding region for the pro-domain of BDNF was removed and the signal peptide sequence modified to improve production, intracellular transport, and secretion of mature BDNF (mBDNF). Intracellular processing and efficacy was shown in HEK293 cells and SH-SY5Y neuroblastoma cells using plasmid DNA and after incorporating the TrkB-2A-mBDNF into an AAV2 vector. Increased BDNF/TrkB-mediated intracellular signaling pathways were observed after AAV2 vector transfection while increased TrkB phosphorylation could be detected in combination with neuroprotection from hydrogen peroxide–induced oxidative stress. Correct processing was also shown in vivo in mouse retinal ganglion cells after AAV2 vector administration to the eye. This novel construct is currently being investigated for its efficacy in animal models to determine its potential to progress to human clinical studies in the future.
Cell Death and Disease | 2018
Andrew Osborne; Tasneem Khatib; Lalana Songra; Amanda C. Barber; Katie May Hall; George Y. X. Kong; Peter Widdowson; Keith R. Martin
Previous studies have demonstrated that intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury. BDNF gene therapy can improve RGC survival in experimental models of glaucoma, the leading cause of irreversible blindness worldwide. However, the therapeutic efficacy of BDNF supplementation alone is time limited at least in part due to BDNF receptor downregulation. Tropomyosin-related receptor kinase-B (TrkB) downregulation has been reported in many neurological diseases including glaucoma, potentially limiting the effect of sustained or repeated BDNF delivery.Here, we characterize a novel adeno-associated virus (AAV) gene therapy (AAV2 TrkB-2A-mBDNF) that not only increases BDNF production but also improves long-term neuroprotective signaling by increasing expression of the BDNF receptor (TrkB) within the inner retina. This approach leads to significant and sustained elevation of survival signaling pathways ERK and AKT within RGCs over 6 months and avoids the receptor downregulation which we observe with treatment with AAV2 BDNF alone. We validate the neuroprotective efficacy of AAV2 TrkB-2A-mBDNF in a mouse model of optic nerve injury, where it outperforms conventional AAV2 BDNF or AAV2 TrkB therapy, before showing powerful proof of concept neuroprotection of RGCs and axons in a rat model of chronic intraocular pressure (IOP) elevation. We also show that there are no adverse effects of the vector on retinal structure or function as assessed by histology and electroretinography in young or aged animals. Further studies are underway to explore the potential of this vector as a candidate for progression into clinical studies to protect RGCs in patients with glaucoma and progressive visual loss despite conventional IOP-lowering treatment.
Archive | 2013
Peter Widdowson; Scott Ralph; Kyriacos Mitrophanous
Investigative Ophthalmology & Visual Science | 2011
Marisa Zallocchi; Katie Binely; Yatish Lad; Scott Ellis; Peter Widdowson; Kyri Mitrophanous; You-Wei Peng; Linda Cheung; Dominic Cosgrove
Investigative Ophthalmology & Visual Science | 2009
Peter Widdowson; S. Hamirally; Katie Binley; M. Nork; Paul E. Miller; V. Bantseev; B. J. Christian; Sharifah Iqball; Stuart Naylor
Investigative Ophthalmology & Visual Science | 2017
Peter Widdowson; Andrew Osborne; Alessia Tassoni; Keith R. Martin
Investigative Ophthalmology & Visual Science | 2017
Andrew Osborne; Peter Widdowson; Keith R. Martin