Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Hall is active.

Publication


Featured researches published by Andrew R. Hall.


Scientific Reports | 2015

Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation.

Giuseppe Mazza; Krista Rombouts; Andrew R. Hall; Luca Urbani; Tu Vinh Luong; W. Al-Akkad; L. Longato; David A. Brown; Panagiotis Maghsoudlou; Amar P. Dhillon; Barry J. Fuller; Brian Davidson; Kevin Moore; Dipok Kumar Dhar; Paolo De Coppi; Massimo Malago; Massimo Pinzani

Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development.


Antioxidants & Redox Signaling | 2013

Mitochondrial dynamics in cardiovascular health and disease.

Sang-Bing Ong; Andrew R. Hall; Derek J. Hausenloy

SIGNIFICANCE Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently been investigated. In this article, we review the emerging role of mitochondrial dynamics in cardiovascular health and disease. RECENT ADVANCES Changes in mitochondrial dynamics have been implicated in vascular smooth cell proliferation, cardiac development and differentiation, cardiomyocyte hypertrophy, myocardial ischemia-reperfusion injury, cardioprotection, and heart failure. CRITICAL ISSUES Many of the experimental studies investigating mitochondrial dynamics in the cardiovascular system have been confined to cardiac cell lines, vascular cells, or neonatal cardiomyocytes, in which mitochondria are distributed throughout the cytoplasm and are free to move. However, in the adult heart where mitochondrial movements are restricted by their tightly-packed distribution along myofibrils or beneath the subsarcolemma, the relevance of mitochondrial dynamics is less obvious. The investigation of transgenic mice deficient in cardiac mitochondrial fission or fusion proteins should help elucidate the role of mitochondrial dynamics in the adult heart. FUTURE DIRECTIONS Investigating the role of mitochondrial dynamics in cardiovascular health and disease should result in the identification of novel therapeutic targets for treating patients with cardiovascular disease, the leading cause of death and disability globally.


Cell Metabolism | 2015

Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure

Alexander Nickel; Albrecht von Hardenberg; Mathias Hohl; Joachim Löffler; Michael Kohlhaas; Janne Becker; Jan-Christian Reil; Andrey Kazakov; Julia Bonnekoh; Moritz Stadelmaier; Sarah-Lena Puhl; Michael Wagner; Ivan Bogeski; Sonia Cortassa; Reinhard Kappl; Bastian Pasieka; Michael Lafontaine; C. Roy D. Lancaster; Thomas S. Blacker; Andrew R. Hall; Michael R. Duchen; Lars Kästner; Peter Lipp; Tanja Zeller; Christian P. Müller; Andreas Knopp; Ulrich Laufs; Michael Böhm; Markus Hoth; Christoph Maack

Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.


PLOS ONE | 2013

Loss of pink1 increases the heart's vulnerability to ischemia-reperfusion injury

Hilary K. Siddall; Derek M. Yellon; Sang-Bing Ong; Uma A. Mukherjee; Niall Burke; Andrew R. Hall; Plamena R. Angelova; Marthe H.R. Ludtmann; Emma Deas; Sean M. Davidson; Mihaela M. Mocanu; Derek J. Hausenloy

Objectives Mutations in PTEN inducible kinase-1 (PINK1) induce mitochondrial dysfunction in dopaminergic neurons resulting in an inherited form of Parkinson’s disease. Although PINK1 is present in the heart its exact role there is unclear. We hypothesized that PINK1 protects the heart against acute ischemia reperfusion injury (IRI) by preventing mitochondrial dysfunction. Methods and Results Over-expressing PINK1 in HL-1 cardiac cells reduced cell death following simulated IRI (29.2±5.2% PINK1 versus 49.0±2.4% control; N = 320 cells/group P<0.05), and delayed the onset of mitochondrial permeability transition pore (MPTP) opening (by 1.3 fold; P<0.05). Hearts excised from PINK1+/+, PINK1+/− and PINK1−/− mice were subjected to 35 minutes regional ischemia followed by 30 minutes reperfusion. Interestingly, myocardial infarct size was increased in PINK1−/− hearts compared to PINK1+/+ hearts with an intermediate infarct size in PINK1+/− hearts (25.1±2.0% PINK1+/+, 38.9±3.4% PINK1+/− versus 51.5±4.3% PINK1−/− hearts; N>5 animals/group; P<0.05). Cardiomyocytes isolated from PINK1−/− hearts had a lower resting mitochondrial membrane potential, had inhibited mitochondrial respiration, generated more oxidative stress during simulated IRI, and underwent rigor contracture more rapidly in response to an uncoupler when compared to PINK1+/+ cells suggesting mitochondrial dysfunction in hearts deficient in PINK1. Conclusions We show that the loss of PINK1 increases the hearts vulnerability to ischemia-reperfusion injury. This may be due, in part, to increased mitochondrial dysfunction. These findings implicate PINK1 as a novel target for cardioprotection.


Cell Death and Disease | 2016

Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction

Andrew R. Hall; N Burke; Rk Dongworth; S B Kalkhoran; Dyson A; J M Vicencio; G W Dorn; Derek M. Yellon; Derek J. Hausenloy

Mitochondria alter their shape by undergoing cycles of fusion and fission. Changes in mitochondrial morphology impact on the cellular response to stress, and their interactions with other organelles such as the sarcoplasmic reticulum (SR). Inhibiting mitochondrial fission can protect the heart against acute ischemia/reperfusion (I/R) injury. However, the role of the mitochondrial fusion proteins, Mfn1 and Mfn2, in the response of the adult heart to acute I/R injury is not clear, and is investigated in this study. To determine the effect of combined Mfn1/Mfn2 ablation on the susceptibility to acute myocardial I/R injury, cardiac-specific ablation of both Mfn1 and Mfn2 (DKO) was initiated in mice aged 4–6 weeks, leading to knockout of both these proteins in 8–10-week-old animals. This resulted in fragmented mitochondria (electron microscopy), decreased mitochondrial respiratory function (respirometry), and impaired myocardial contractile function (echocardiography). In DKO mice subjected to in vivo regional myocardial ischemia (30 min) followed by 24 h reperfusion, myocardial infarct size (IS, expressed as a % of the area-at-risk) was reduced by 46% compared with wild-type (WT) hearts. In addition, mitochondria from DKO animals had decreased MPTP opening susceptibility (assessed by Ca2+-induced mitochondrial swelling), compared with WT hearts. Mfn2 is a key mediator of mitochondrial/SR tethering, and accordingly, the loss of Mfn2 in DKO hearts reduced the number of interactions measured between these organelles (quantified by proximal ligation assay), attenuated mitochondrial calcium overload (Rhod2 confocal microscopy), and decreased reactive oxygen species production (DCF confocal microscopy) in response to acute I/R injury. No differences in isolated mitochondrial ROS emissions (Amplex Red) were detected in response to Ca2+ and Antimycin A, further implicating disruption of mitochondria/SR tethering as the protective mechanism. In summary, despite apparent mitochondrial dysfunction, hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction due to impaired mitochondria/SR tethering.


Cell Death and Disease | 2014

DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury

Rk Dongworth; Uma A. Mukherjee; Andrew R. Hall; Astin R; Sang-Bing Ong; Zhi Yao; Dyson A; Sean M. Davidson; Derek M. Yellon; Derek J. Hausenloy

Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson’s disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.


Thrombosis and Haemostasis | 2014

Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology

Sang-Bing Ong; Andrew R. Hall; Rk Dongworth; Siavash Beikoghli Kalkhoran; Aswin Pyakurel; Luca Scorrano; Derek J. Hausenloy

The mechanism through which the protein kinase Akt (also called PKB), protects the heart against acute ischaemia-reperfusion injury (IRI) is not clear. Here, we investigate whether Akt mediates its cardioprotective effect by modulating mitochondrial morphology. Transfection of HL-1 cardiac cells with constitutively active Akt (caAkt) changed mitochondrial morphology as evidenced by an increase in the proportion of cells displaying predominantly elongated mitochondria (73 ± 5.0 % caAkt vs 49 ± 5.8 % control: N=80 cells/group; p< 0.05). This effect was associated with delayed time taken to induce mitochondrial permeability transition pore (MPTP) opening (by 2.4 ± 0.5 fold; N=80 cells/group: p< 0.05); and reduced cell death following simulated IRI (32.8 ± 1.2 % caAkt vs 63.8 ± 5.6 % control: N=320 cells/group: p< 0.05). Similar effects on mitochondrial morphology, MPTP opening, and cell survival post-IRI, were demonstrated with pharmacological activation of Akt using the known cardioprotective cytokine, erythropoietin (EPO). The effect of Akt on inducing mitochondrial elongation was found to be dependent on the mitochondrial fusion protein, Mitofusin-1 (Mfn1), as ablation of Mfn1 in mouse embryonic fibroblasts (MEFs) abrogated Akt-mediated mitochondrial elongation. Finally, in vivo pre-treatment with EPO reduced myocardial infarct size (as a % of the area at risk) in adult mice subjected to IRI (26.2 ± 2.6 % with EPO vs 46.1 ± 6.5 % in control; N=7/group: p< 0.05), and reduced the proportion of cells displaying myofibrillar disarray and mitochondrial fragmentation observed by electron microscopy in adult murine hearts subjected to ischaemia from 5.8 ± 1.0 % to 2.2 ± 1.0 % (N=5 hearts/group; p< 0.05). In conclusion, we found that either genetic or pharmacological activation of Akt protected the heart against acute ischaemia-reperfusion injury by modulating mitochondrial morphology.


Journal of Molecular and Cellular Cardiology | 2014

Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function

Marianne T. Neary; Keat Eng Ng; Marthe H.R. Ludtmann; Andrew R. Hall; Izabela Piotrowska; Sang-Bing Ong; Derek J. Hausenloy; Timothy J. Mohun; Andrey Y. Abramov; Ross A. Breckenridge

Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation.


Radiology | 2015

Equilibrium Contrast-enhanced CT Imaging to Evaluate Hepatic Fibrosis: Initial Validation by Comparison with Histopathologic Sampling

Steve Bandula; Shonit Punwani; William M. Rosenberg; Rajiv Jalan; Andrew R. Hall; Amar P. Dhillon; James C. Moon; Stuart A. Taylor

PURPOSE To prospectively evaluate hepatic extracellular volume (ECV) fraction measurement at equilibrium computed tomographic (CT) imaging compared with both fibrosis quantified with histologic analysis and the enhanced liver fibrosis panel (ELF) in a cohort of patients with chronic hepatitis. MATERIALS AND METHODS This prospective study was approved by the regional ethics committee. All patients gave fully informed written consent. Forty patients with a clinical indication for liver biopsy were prospectively recruited for liver ECV quantitation at equilibrium CT imaging. Biopsy samples underwent digital image analysis and assessment of collagen content expressed as the collagen-proportionate area (CPA). Spearman correlation was used to evaluate association between ECV, ELF, and CPA. Multiple regression analysis was used to test prediction of CPA by a model that combined ECV and ELF. ECV, ELF score, and CPA were compared with Ishak stage by using the Kruskal-Wallis test. RESULTS Complete ECV, ELF, and CPA were available in 33 patients. Liver ECV, CPA, and ELF had a median of 0.26 (interquartile range [IQR], 0.24-0.29), 5.0 (IQR, 3.0-15.0), and 9.71 (IQR, 8.14-10.92), respectively. Hepatic ECV demonstrated good association with CPA (r = 0.64; P < .001) and ELF score (r = 0.38; P < .027), with no significant difference in strength of correlation (P = .177). The regression model that combined ELF and ECV achieved good prediction of CPA (R(2) = 0.67; P < .001). Significant variation in ECV and ELF was seen between fibrosis stage groups. CONCLUSION Hepatic ECV measured with equilibrium CT imaging is associated with biopsy-derived CPA and serum ELF-validated markers of liver fibrosis. This suggests that equilibrium CT imaging can quantify diffuse fibrosis in chronic liver disease.


Journal of Cardiovascular Pharmacology and Therapeutics | 2016

Characterization of the Langendorff Perfused Isolated Mouse Heart Model of Global Ischemia–Reperfusion Injury: Impact of Ischemia and Reperfusion Length on Infarct Size and LDH Release

Xavier Rossello; Andrew R. Hall; Robert M. Bell; Derek M. Yellon

Introduction: The Langendorff perfused isolated mouse heart model is commonly used to assess the efficacy of cardioprotective therapies, although the duration of ischemia and reperfusion vary considerably between different laboratories. We aimed to provide a thorough characterization of the model with different durations of ischemia and reperfusion by means of 2 different end points—infarct size (IS) using triphenyltetrazolium staining and lactate dehydrogenase (LDH) release. Methods: C57/BL6 mice hearts were retrograde perfused on a Langendorff apparatus and allocated into 9 groups in a 3 × 3 factorial design—3 ischemic durations (25, 35, and 45 minutes) matched by 3 reperfusion durations (60, 120, and 180 minutes). A protocol of ischemic preconditioning (IPC) was applied to investigate IS and LDH kinetics with different ischemic durations. Results: Infarct size progressively increased with the duration of both ischemia and reperfusion and was found to be independently associated with both determinants. In terms of LDH release kinetics, a peak was observed within the first 10 to 15 minutes of reperfusion and steadily declined thereafter, although a second smaller peak was observed in the 25-minute ischemia group. Only LDH peak release was associated with the ischemia length, with area under the curve (AUC) failing to follow ischemic duration. Interestingly, while IPC reduced IS in all ischemic durations investigated, a significant attenuation of LDH AUC was only observed in the 25-minute index ischemia group. Only a moderately positive correlation was observed between IS and LDH peak (R = .547, P = .006) and AUC (R = .664, P < .001). Conclusion: Myocardial IS measured by triphenyltetrazolium staining depends on both the duration of ischemia and the length of the reperfusion period. The LDH assessment may not be the most reliable tool to assess IS and/or to examine cardioprotective effectiveness at various times of ischemia.

Collaboration


Dive into the Andrew R. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Yellon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Pinzani

University College London

View shared research outputs
Top Co-Authors

Avatar

Niall Burke

University College London

View shared research outputs
Top Co-Authors

Avatar

Rk Dongworth

University College London

View shared research outputs
Top Co-Authors

Avatar

Sang-Bing Ong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Mazza

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Urbani

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge