Andrew R. Jenkins
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew R. Jenkins.
The American Naturalist | 2013
Bernt-Erik Sæther; Tim Coulson; Steinar Engen; Res Altwegg; Kenneth B. Armitage; Christophe Barbraud; Peter H. Becker; Daniel T. Blumstein; F. Stephen Dobson; Marco Festa-Bianchet; Andrew R. Jenkins; Carl Jones; Malcolm A. C. Nicoll; Ken Norris; Madan K. Oli; Arpat Ozgul; Henri Weimerskirch
A major question in ecology is how age-specific variation in demographic parameters influences population dynamics. Based on long-term studies of growing populations of birds and mammals, we analyze population dynamics by using fluctuations in the total reproductive value of the population. This enables us to account for random fluctuations in age distribution. The influence of demographic and environmental stochasticity on the population dynamics of a species decreased with generation time. Variation in age-specific contributions to total reproductive value and to stochastic components of population dynamics was correlated with the position of the species along the slow-fast continuum of life-history variation. Younger age classes relative to the generation time accounted for larger contributions to the total reproductive value and to demographic stochasticity in “slow” than in “fast” species, in which many age classes contributed more equally. In contrast, fluctuations in population growth rate attributable to stochastic environmental variation involved a larger proportion of all age classes independent of life history. Thus, changes in population growth rates can be surprisingly well explained by basic species-specific life-history characteristics.
Bird Conservation International | 2014
Sonja C. Krüger; David G. Allan; Andrew R. Jenkins; Arjun Amar
Summary T erritory occupancy, distribution and density of the isolated Bearded Vulture Gypaetus barbatus meridionalis population in the Maloti-Drakensberg mountains of southern Africa were assessed between two time periods - former ( 1960–1999) and current ( 2000–2012) - to identify population trends. Overall, 190 territories were recorded of which 109 are currently occupied. The number of occupied breeding territories decreased by a minimum of 32% and a maximum of 51% over the past five decades. Territories located on the periphery of the breeding range were more likely to be abandoned than those in the core. The current population is estimated at a minimum of 352 and a maximum of 390 individuals. The breeding range decreased by 27%, restricting the birds to an estimated area of occupancy of 28,125 km 2 . Breeding densities also decreased by 20%, declining from 4.9 to 3.9 pairs/1,000 km 2 . In both periods, higher densities were recorded in the core of the range. Nests were located about 9.0 km apart, a slight increase from the 7.7 km recorded formerly. Inter-nest distances increased with distance from the core range. Further studies are required to ascertain whether productivity or survival is limiting population growth, and whether anthropo-genic influences are resulting in the abandonment of territories in the periphery of the range and the subsequent decline in number . s
Bird Conservation International | 2011
Andrew R. Jenkins; Jessica M. Shaw; Jon J. Smallie; Bradley Gibbons; Ronelle Visagie; Peter G. Ryan
Ludwig’s Bustard Neotis ludwigii , endemic to Africa’s south-west arid zone, is susceptible to collisions with overhead power lines. Limited data from the south-eastern part of its range suggest that this factor may threaten its survival. We estimated transmission line collision rates for Ludwig’s Bustard across its South African range to assess the effect of this mortality on the population. Conservatively, collision rates averaged at least 0.63 ± 0.12 fatal collisions per km of transmission line per year, with relatively little regional variation. Despite being less abundant, the larger males were more collision-prone than females, which might account for the female-biased population. Extrapolating collision rates across the range of the species suggests that 4,000–11,900 birds are killed annually on high-voltage transmission lines. Actual mortality on overhead lines is probably much greater, given biases in carcass detection (crippling, scavenging and habitat biases), as well as the fact that our estimate excludes mortality on lower voltage distribution lines and telephone wires. Given an estimated global population of 56,000–81,000 birds in the late 1980s, the demographic invariant method suggests that such mortality is unsustainable. This result supports the recent upgrading of the conservation status of Ludwig’s Bustard from ‘Least Concern’ to ‘Endangered’, and highlights the need for further research on this problem.
Bird Conservation International | 2004
Odette Curtis; Robert E. Simmons; Andrew R. Jenkins
Black Harrier Circus maurus is a rare southern African endemic that may have lost over 50% of its core breeding habitat in the last century as a result of extensive land transformation by agriculture, invasive alien vegetation and urbanization in the Fynbos biome. We partially surveyed both the western (Swartland) and southern (Overberg) coastal plains of south-western South Africa, over 3 years (2000–2002) for breeding Black Harriers, and found a distinctly polarized distribution. Nests were concentrated either along the coastal strip or inland in montane habitats, and generally absent from heavily cultivated and transformed inland plains areas. Limited evidence (direct observations, prey remains) suggests that harriers forage in cereal croplands but generally do not breed in these modified environments. We recorded breeding success at nests in coastal (Dune Thicket) and montane (Mountain Fynbos) habitats. Harriers bred successfully along the coast and nests were aggregated in loose colonies around wetlands. Harriers in montane environments bred poorly, took a wide range of prey, and were subject to high levels of nest predation. We propose that Black Harriers have been displaced from lowland Renosterveld and Fynbos habitats (characterized by better foraging and nesting opportunities), primarily by the advent and spread of cereal agriculture. The conservation and future research implications of this hypothesis are discussed.
Ostrich | 2010
Jessica M. Shaw; Andrew R. Jenkins; Peter G. Ryan; Jon J. Smallie
Avian mortality on power lines in South Africa is currently recorded on the Central Incident Register (CIR), which is a collation of incidentally reported cases. The true scale of the problem is unknown, so we report here on a survey of representative power lines in the Overberg region of the Western Cape. On the 199 km surveyed, 123 birds of at least 18 species were found. Collisions were more common than electrocutions, apparently killing 88% of the birds found on distribution lines. Large terrestrial birds were the most numerous victims, with large numbers of Blue Cranes Anthropoides paradiseus and Denhams Bustards Neotis denhami killed. In comparison with mortality rates from the CIR, we estimate that only 2.6% of power-line mortalities are reported, emphasising the importance of systematic surveys in quantifying mortality and directing mitigation. Our survey highlights the general hazard that power lines pose to avifauna, and the urgent need for further research into the population impacts of the high incidence of collisions.
Bird Conservation International | 2013
Julia Jenkins; Robert E. Simmons; Odette Curtis; Marion Atyeo; Domatilla Raimondo; Andrew R. Jenkins
Determining the efficacy of using indicator species to predict the spatial location of biodiversity hotspots is one way of maximising the conservation of biodiversity in already threatened habitats. Recent evidence from Europe suggests raptors can play such an indicator role, so we tested this approach with a globally threatened southern hemisphere species, the Black Harrier Circus maurus. We asked if this species, found in South Africa’s mega-diverse Cape Floral Kingdom, breeds in habitat fragments that were more diverse in terms of small mammals, birds and plants than unoccupied fragments of similar size. Renosterveld is a highly fragmented habitat that has lost . 90% of its original extent and remains only on privately-owned lands. Surveys of small mammals, birds and plants undertaken in 20 fragments in the Overberg region, South Africa, revealed nine with breeding harriers and 11 without harriers. Harrier-occupied fragments were associated with a 3.5 fold higher number of bird species and higher small mammal species richness than unoccupied ones. There was a lower abundance of most plants in occupied patches, except for red grass Themeda triandra which is an indicator of pristine renosterveld. Vegetation structure was significantly different, with harriers nesting on patches with taller, more open vegetation. While the diversity trends were not statistically significant, a positive trend between the presence of harriers and higher abundance of red grass – as an indicator of the more pristine state of the patch, suggests that harriers might allow biodiversity managers a heuristic approach for selecting the remaining patches of pristine renosterveld. The need for intensive sampling of several taxa leads to small samples and a lack of clear-cut trends for these top predators as indicators of plant diversity.
Bird Conservation International | 2013
Andrew R. Jenkins; Koos H. De Goede; Lovelater Sebele; Megan Diamond
In the Karoo region of South Africa, eagles nesting on high voltage power pylons are responsible for frequent short-circuits or faults, which reduce the quality of commercial power supply and escalate costs to the country’s energy supplier, Eskom. Between 2002 and 2006 we conducted annual helicopter surveys of eagle nests on 1,400 km of power line and located 139 large nest structures, making up 96 eagle territories occupied by three species: Martial Eagle Polemaetus bellicosus (66 pairs), Verreaux’s Eagle Aquila verreauxii (13 pairs) and Tawny Eagle Aquila rapax (17 pairs), and detailed 357 pair-years of breeding activity, including 241 breeding attempts. Roost sites and active nests were associated with line faulting, and more so at particular pylon configurations. We developed a three-step management plan to reduce eagle-related faulting while still accommodating eagles on the power lines: (i) all (potentially) problematic nests were relocated from high-risk positions above the power conductors, to specially provided platforms placed below the conductors; (ii) perch deterrents were installed above the conductors on all nest pylons and on high-risk pylons up to 10 structures on both sides of each nest tower; and (iii) the welfare of the eagles was monitored before and after management. In this way, line faulting was reduced on actively managed lines by > 75%, with no obvious deleterious effects on the eagle population. The study revealed that: (i) power lines can support substantial breeding populations of threatened large raptors, (ii) these birds can be a source of commercially significant line faulting, and (iii) nest relocations and perch deterrents are effective in reducing faulting without negatively impacting eagle populations.
PLOS ONE | 2018
Andrew R. Jenkins; Tim Reid; Johan du Plessis; Robin Colyn; Grant Benn; Rhonda Millikin
Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16–29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development.
Ibis | 2010
Jessica M. Shaw; Andrew R. Jenkins; Jon J. Smallie; Peter G. Ryan
Ibis | 2014
Res Altwegg; Andrew R. Jenkins; Fitsum Abadi