Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. McKenzie is active.

Publication


Featured researches published by Andrew R. McKenzie.


Bioorganic & Medicinal Chemistry Letters | 2012

Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl sulfonamides

Suzanne S. Stokes; Robert Albert; Ed T. Buurman; Beth Andrews; Adam B. Shapiro; Oluyinka Green; Andrew R. McKenzie; Ludovic R. Otterbein

A previously described aryl sulfonamide series, originally found through HTS, targets GlmU, a bifunctional essential enzyme involved in bacterial cell wall synthesis. Using structure-guided design, the potency of enzyme inhibition was increased in multiple isozymes from different bacterial species. Unsuitable physical properties (low LogD and high molecular weight) of those compounds prevented them from entering the cytoplasm of bacteria and inhibiting cell growth. Further modifications described herein led to compounds that possessed antibacterial activity, which was shown to occur through inhibition of GlmU. The left-hand side amide and the right-hand side sulfonamides were modified such that enzyme inhibitory activity was maintained (IC(50) <0.1 μM against GlmU isozymes from Gram-negative organisms), and the lipophilicity was increased giving compounds with LogD -1 to 3. Antibacterial activity in an efflux-pump deficient mutant of Haemophilus influenzae resulted for compounds such as 13.


ACS Chemical Biology | 2012

In Vivo Validation of Thymidylate Kinase (TMK) with a Rationally Designed, Selective Antibacterial Compound

Thomas A. Keating; Joseph V. Newman; Nelson B. Olivier; Linda G. Otterson; Beth Andrews; P. Ann Boriack-Sjodin; John N. Breen; Peter Doig; Jacques Dumas; Eric Gangl; Oluyinka Green; Satenig Guler; Martin F. Hentemann; Diane Joseph-McCarthy; Sameer Kawatkar; Amy Kutschke; James T. Loch; Andrew R. McKenzie; Selvi Pradeepan; Swati Prasad; Gabriel Martinez-Botella

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Journal of Medicinal Chemistry | 2012

Discovery of Selective and Potent Inhibitors of Gram-Positive Bacterial Thymidylate Kinase (TMK).

Gabriel Martinez-Botella; John N. Breen; James Duffy; Jacques Dumas; Bolin Geng; Ian K. Gowers; Oluyinka Green; Satenig Guler; Martin F. Hentemann; Felix A. Hernandez-Juan; Diane Joseph-McCarthy; Sameer Kawatkar; Nicholas A. Larsen; Ovadia Lazari; James T. Loch; Jacqueline Macritchie; Andrew R. McKenzie; Joseph V. Newman; Nelson B. Olivier; Linda G. Otterson; Andrew Pate Owens; Jon Read; David W. Sheppard; Thomas A. Keating

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK. MICs < 1 μg/mL were achieved against methicillin-resistant S. aureus (MRSA), S. pneumoniae, and vancomycin-resistant Enterococcus (VRE). Log D adjustments yielded single diastereomers 14 (TK-666) and 46, showing a broad antibacterial spectrum against Gram-positive bacteria and excellent selectivity against the human thymidylate kinase ortholog.


Bioorganic & Medicinal Chemistry Letters | 2012

Inhibitors of Acetyltransferase Domain of N-Acetylglucosamine-1-Phosphate-Uridyltransferase/ Glucosamine-1-Phosphate-Acetyltransferase (Glmu). Part 1: Hit to Lead Evaluation of a Novel Arylsulfonamide Series.

Oluyinka Green; Andrew R. McKenzie; Adam B. Shapiro; Ludovic R. Otterbein; Haihong Ni; Arthur Patten; Suzanne S. Stokes; Robert Albert; Sameer Kawatkar; Jason Breed

A novel arylsulfonamide-containing series of compounds represented by 1, discovered by highthroughput screening, inhibit the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). X-ray structure determination confirmed that inhibitor binds at the site occupied by acetyl-CoA, indicating that series is competitive with this substrate. This letter documents our early hit-to-lead evaluation of the chemical series and some of the findings that led to improvement in in-vitro potency against Gram-negative and Gram-positive bacterial isozymes, exemplified by compound 40.


Journal of Medicinal Chemistry | 2014

Antibacterial inhibitors of gram-positive thymidylate kinase: structure-activity relationships and chiral preference of a new hydrophobic binding region.

Sameer Kawatkar; Thomas A. Keating; Nelson B. Olivier; John N. Breen; Oluyinka Green; Satenig Guler; Martin F. Hentemann; James T. Loch; Andrew R. McKenzie; Joseph V. Newman; Linda G. Otterson; Gabriel Martinez-Botella

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S. aureus TMK and 2 μg/mL MIC against methicillin-resistant S. aureus (MRSA). This compound exhibits a striking inverted chiral preference for binding relative to earlier compounds and also has improved physical properties and pharmacokinetics over previously published compounds. An example of this new series was efficacious in a murine S. aureus infection model, suggesting that compounds like 39 are options for further work toward a new Gram-positive antibiotic by maintaining a balance of microbiological potency, low clearance, and low protein binding that can result in lower efficacious doses.


ACS Infectious Diseases | 2016

Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus influenzae by in Vitro Resistance Mutation Mapping.

David C. McKinney; Charles J. Eyermann; Rong-Fang Gu; Jun Hu; Steven L. Kazmirski; Sushmita D. Lahiri; Andrew R. McKenzie; Adam B. Shapiro; Gloria Anne Breault

Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (β-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.


Organic Letters | 2004

Catalytic Asymmetric Synthesis of Glutamate Analogues

David J. Burkhart; Andrew R. McKenzie; Jared K. Nelson; Katherine I. Myers; Xue Zhao; Kathy R. Magnusson; Nicholas R. Natale


Archive | 2004

Targeted drug-formaldehyde conjugates and methods of making and using the same

Tad H. Koch; Michael P. Coleman; Peter S. Cogan; Patrick J. Burke; Glen C. Post; David J. Burkhart; Andrew R. McKenzie; Katrina L. Jackson; Brian T. Kalet


Arkivoc | 2010

Preparation of chiral isoxazole carbinols via catalytic asymmetric Corey-Bakshi-Shibata reduction

Nicholas R. Natale; Kevin C. Rider; David J. Burkhart; Chun Li; Andrew R. McKenzie; Jared K. Nelson


Synlett | 2003

Preparation of Keto-Isoxazole Polyketide Synthons

Jared K. Nelson; David J. Burkhart; Andrew R. McKenzie; Nicholas R. Natale

Collaboration


Dive into the Andrew R. McKenzie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge