Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Thompson is active.

Publication


Featured researches published by Andrew R. Thompson.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Multidimensional evaluation of managed relocation

Jessica J. Hellmann; Jason S. McLachlan; Dov F. Sax; Mark W. Schwartz; Patrick Gonzalez; E. Jean Brennan; Alejandro E. Camacho; Terry L. Root; Osvaldo E. Sala; Stephen H. Schneider; Daniel M. Ashe; Jamie Rappaport Clark; Regan Early; Julie R. Etterson; E. Dwight Fielder; Jacquelyn L. Gill; Ben A. Minteer; Stephen Polasky; Hugh D. Safford; Andrew R. Thompson; Mark Vellend

Managed relocation (MR) has rapidly emerged as a potential intervention strategy in the toolbox of biodiversity management under climate change. Previous authors have suggested that MR (also referred to as assisted colonization, assisted migration, or assisted translocation) could be a last-alternative option after interrogating a linear decision tree. We argue that numerous interacting and value-laden considerations demand a more inclusive strategy for evaluating MR. The pace of modern climate change demands decision making with imperfect information, and tools that elucidate this uncertainty and integrate scientific information and social values are urgently needed. We present a heuristic tool that incorporates both ecological and social criteria in a multidimensional decision-making framework. For visualization purposes, we collapse these criteria into 4 classes that can be depicted in graphical 2-D space. This framework offers a pragmatic approach for summarizing key dimensions of MR: capturing uncertainty in the evaluation criteria, creating transparency in the evaluation process, and recognizing the inherent tradeoffs that different stakeholders bring to evaluation of MR and its alternatives.


BioScience | 2012

Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges

Mark W. Schwartz; Jessica J. Hellmann; Jason McLachlan; Dov F. Sax; Justin O. Borevitz; Jean Brennan; Alejandro E. Camacho; Gerardo Ceballos; Jamie Rappaport Clark; Holly Doremus; Regan Early; Julie R. Etterson; Dwight Fielder; Jacquelyn L. Gill; Patrick Gonzalez; Nancy Green; Lee Hannah; Dale Jamieson; Debra Javeline; Ben A. Minteer; Jay Odenbaugh; Stephen Polasky; Terry L. Root; Hugh D. Safford; Osvaldo E. Sala; Stephen H. Schneider; Andrew R. Thompson; John W. Williams; Mark Vellend; Pati Vitt

Managed relocation is defined as the movement of species, populations, or genotypes to places outside the areas of their historical distributions to maintain biological diversity or ecosystem functioning with changing climate. It has been claimed that a major extinction event is under way and that climate change is increasing its severity. Projections indicating that climate change may drive substantial losses of biodiversity have compelled some scientists to suggest that traditional management strategies are insufficient. The managed relocation of species is a controversial management response to climate change. The published literature has emphasized biological concerns over difficult ethical, legal, and policy issues. Furthermore, ongoing managed relocation actions lack scientific and societal engagement. Our interdisciplinary team considered ethics, law, policy, ecology, and natural resources management in order to identify the key issues of managed relocation relevant for developing sound policies that support decisions for resource management. We recommend that government agencies develop and adopt best practices for managed relocation.


Trends in Ecology and Evolution | 2009

Managed relocation: a nuanced evaluation is needed.

Dov F. Sax; Katherine F. Smith; Andrew R. Thompson

Managed relocation (aka ‘assisted colonization’ and ‘assisted migration’ [1,2]) aims to save species from the effects of climate change by purposefully transporting them to areas where they have not previously occurred, but where they are expected to survive as temperatures increase. In a recent Opinion article in TREE [3], Ricciardi and Simberloff suggest that ‘assisted colonization is tantamount to ecological roulette and should probably be rejected as a sound conservation strategy by the precautionary principle.’ We disagree for three primary reasons.


Royal Society Open Science | 2016

Food limitation of sea lion pups and the decline of forage off central and southern California

Sam McClatchie; John C. Field; Andrew R. Thompson; Tim Gerrodette; Mark Lowry; Paul C. Fiedler; William Watson; Karen Nieto; Russell D. Vetter

California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5–38° N) for a decade, suggesting that trends in forage are environmentally driven.


The American Naturalist | 2013

Ecology and Evolution Affect Network Structure in an Intimate Marine Mutualism

Andrew R. Thompson; Thomas C. Adam; Kristin M. Hultgren; Christine E. Thacker

Elucidating patterns and causes of interaction among mutualistic species is a major focus of ecology, and recent meta-analyses of terrestrial networks show that network-level reciprocal specialization tends to be higher in intimate mutualisms than in nonintimate mutualisms. It is largely unknown, however, whether this pattern holds for and what factors affect specialization in marine mutualisms. Here we present the first analysis of network specialization () for marine mutualistic networks. Specialization among eight Indo-Pacific networks of obligate mutualistic gobies and shrimps was indistinguishable from that among comparably intimate terrestrial mutualisms (ants-myrmecophytes) and higher than that among nonintimate ones (seed dispersers). Specialization was affected by variability in habitat use for both gobies and shrimps and by phylogenetic history for shrimps. Habitat use was phylogenetically conserved among shrimp, and thus effects of shrimp phylogeny on partner choice were mediated in part by habitat. By contrast, habitat use and pairing patterns in gobies were not related to phylogenetic history. This asymmetry appears to result from evolutionary constraints on partner use in shrimps and convergence among distantly related gobies to utilize burrows provided by multiple shrimp species. Results indicate that the evolution of mutualism is affected by life-history characteristics that transcend environments and that different factors constrain interactions in disparate ecosystems.


PLOS ONE | 2012

Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve

Andrew R. Thompson; William Watson; Sam McClatchie; Edward D. Weber

To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world.


Frontiers in Marine Science | 2017

DNA Sequencing as a Tool to Monitor Marine Ecological Status

Kelly D. Goodwin; Luke R. Thompson; Bernardo Duarte; Tim Kahlke; Andrew R. Thompson; João Carlos Marques; Isabel Caçador

Many ocean policies mandate integrated, ecosystem-based approaches to marine monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological quality. Most traditional methods to assess biological quality rely on specialized expertise to provide visual identification of a limited set of specific taxonomic groups, a time-consuming process that can provide a narrow view of ecological status. In addition, microbial assemblages drive food webs but are not amenable to visual inspection and thus are largely excluded from detailed inventory. Molecular-based assessments of biodiversity and ecosystem function offer advantages over traditional methods and are increasingly being generated for a suite of taxa using a “microbes to mammals” or “barcodes to biomes” approach. Progress in these efforts coupled with continued improvements in high throughput sequencing and bioinformatics pave the way for sequence data to be employed in formal integrated ecosystem evaluation, including food web assessments, as called for in the European Union Marine Strategy Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic macroinvertebrates, ichthyoplankton) and emerging (e.g., microbial assemblages, fish via eDNA), promises to improve assessment of marine biological quality by increasing the breadth, depth, and throughput of information and by reducing costs and reliance on specialized taxonomic expertise.


PLOS ONE | 2017

Effects of the Blob on settlement of spotted sand bass, Paralabrax maculatofasciatus, to Mission Bay, San Diego, CA

Anthony Basilio; Steven Searcy; Andrew R. Thompson

The West Coast of the United States experienced variable and sometimes highly unusual oceanographic conditions between 2012 and 2015. In particular, a warm mass of surface water known as the Pacific Warm Anomaly (popularly as “The Blob”) impinged on southern California in 2014, and warm-water conditions remained during the 2015 El Niño. We examine how this oceanographic variability affected delivery and individual characteristics of larval spotted sand bass (Paralabrax maculatofasciatus) to an estuarine nursery habitat in southern California. To quantify P. maculatofasciatus settlement patterns, three larval collectors were installed near the mouth of Mission Bay, San Diego CA, and retrieved weekly from June–October of 2012–2015. During ‘Blob‘ conditions in 2014 and 2015, lower settlement rates of spotted sand bass were associated with higher sea surface temperature and lower wind speed, chlorophyll a (chl a) and upwelling. Overall, the number of settlers per day peaked at intermediate chl a values across weeks. Individual characteristics of larvae that settled in 2014–2015 were consistent with a poor feeding environment. Although settlers were longer in length in 2014–15, fish in these years had slower larval otolith growth, a longer larval duration, and a trend towards lower condition, traits that are often associated with lower survival and recruitment. This study suggests that future settlement and recruitment of P. maculatofasciatus and other fishes with similar life histories may be adversely affected in southern California if ocean temperatures continue to rise in the face of climate change.


Royal Society Open Science | 2016

Correction to ‘Food limitation of sea lion pups and the decline of forage off central and southern California’

Sam McClatchie; John C. Field; Andrew R. Thompson; Tim Gerrodette; Mark Lowry; Paul C. Fiedler; William Watson; Karen Nieto; Russell D. Vetter

[This corrects the article DOI: 10.1098/rsos.150628.].


California Cooperative Oceanic Fisheries Investigations Reports | 2013

State of the California Current 2012–13: No Such Thing as an "Average" Year

Brian K. Wells; Isaac D. Schroeder; Jarrod A. Santora; Elliott L. Hazen; Steven J. Bograd; Eric P. Bjorkstedt; Valerie J. Loeb; Sam McClatchie; Edward D. Weber; William Watson; Andrew R. Thompson; William T. Peterson; Richard D. Brodeur; Jeff Harding; John C. Field; Keith M. Sakuma; Sean A. Hayes; Nathan J. Mantua; William J. Sydeman; Marcel Losekoot; Sarah Ann Thompson; John L. Largier; Sung Yong Kim; Francisco P. Chavez; Caren Barceló; Pete Warzybok; Russel W. Bradley; Jaime Jahncke; Ralf Goericke; Gregory S. Campbell

Collaboration


Dive into the Andrew R. Thompson's collaboration.

Top Co-Authors

Avatar

William Watson

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Sam McClatchie

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

John C. Field

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Richard D. Brodeur

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben A. Minteer

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward D. Weber

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge