Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Wood is active.

Publication


Featured researches published by Andrew R. Wood.


PLOS Medicine | 2013

Causal Relationship Between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts

Karani Santhanakrishnan Vimaleswaran; Diane J. Berry; Emmi Tikkanen; Stefan Pilz; Linda T. Hiraki; Jason D. Cooper; Zari Dastani; Denise K. Houston; Andrew R. Wood; Liesbeth Vandenput; Lina Zgaga; Laura M. Yerges-Armstrong; Mark I. McCarthy; Marika Kaakinen; Marcus E. Kleber; Kurt Lohman; Luigi Ferrucci; Liisa Byberg; Lars Lind; Mattias Lorentzon; Veikko Salomaa; Harry Campbell; Malcolm G. Dunlop; Braxton D. Mitchell; Karl-Heinz Herzig; Elizabeth A. Streeten; Evropi Theodoratou; Antti Jula; Nicholas J. Wareham; Claes Ohlsson

A mendelian randomization study based on data from multiple cohorts conducted by Karani Santhanakrishnan Vimaleswaran and colleagues re-examines the causal nature of the relationship between vitamin D levels and obesity.


PLOS Genetics | 2012

A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation

Andrea D. Coviello; Robin Haring; Melissa F. Wellons; Dhananjay Vaidya; Terho Lehtimäki; Sarah Keildson; Kathryn L. Lunetta; Chunyan He; Myriam Fornage; Vasiliki Lagou; Massimo Mangino; N. Charlotte Onland-Moret; Brian H. Chen; Joel Eriksson; Melissa Garcia; Yongmei Liu; Annemarie Koster; Kurt Lohman; Leo-Pekka Lyytikäinen; Ann Kristin Petersen; Jennifer Prescott; Lisette Stolk; Liesbeth Vandenput; Andrew R. Wood; Wei Vivian Zhuang; Aimo Ruokonen; Anna Liisa Hartikainen; Anneli Pouta; Stefania Bandinelli; Reiner Biffar

Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.


Aging Cell | 2011

Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing.

Lorna W. Harries; Dena Hernandez; William Henley; Andrew R. Wood; Alice C. Holly; Rachel M. Bradley-Smith; Hanieh Yaghootkar; Ambarish Dutta; Anna Murray; Timothy M. Frayling; Jack M. Guralnik; Stefania Bandinelli; Andrew Singleton; Luigi Ferrucci; David Melzer

Aging is a major risk factor for chronic disease in the human population, but there are little human data on gene expression alterations that accompany the process. We examined human peripheral blood leukocyte in‐vivo RNA in a large‐scale transcriptomic microarray study (subjects aged 30–104 years). We tested associations between probe expression intensity and advancing age (adjusting for confounding factors), initially in a discovery set (n = 458), following‐up findings in a replication set (n = 240). We confirmed expression of key results by real‐time PCR. Of 16 571 expressed probes, only 295 (2%) were robustly associated with age. Just six probes were required for a highly efficient model for distinguishing between young and old (area under the curve in replication set; 95%). The focused nature of age‐related gene expression may therefore provide potential biomarkers of aging. Similarly, only 7 of 1065 biological or metabolic pathways were age‐associated, in gene set enrichment analysis, notably including the processing of messenger RNAs (mRNAs); [P < 0.002, false discovery rate (FDR) q < 0.05]. This is supported by our observation of age‐associated disruption to the balance of alternatively expressed isoforms for selected genes, suggesting that modification of mRNA processing may be a feature of human aging.


PLOS Genetics | 2011

Multiple Loci Are Associated with White Blood Cell Phenotypes

Michael A. Nalls; David Couper; Toshiko Tanaka; Frank J. A. van Rooij; Ming-Huei Chen; Albert V. Smith; Daniela Toniolo; Neil A. Zakai; Qiong Yang; Andreas Greinacher; Andrew R. Wood; Melissa Garcia; Paolo Gasparini; Yongmei Liu; Thomas Lumley; Aaron R. Folsom; Alex P. Reiner; Christian Gieger; Vasiliki Lagou; Janine F. Felix; Henry Völzke; Natalia Gouskova; Alessandro Biffi; Angela Döring; Uwe Völker; Sean Chong; Kerri L. Wiggins; Augusto Rendon; Abbas Dehghan; Matt Moore

White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds.


Proceedings of the National Academy of Sciences of the United States of America | 2001

An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis

Lillian W. Chiang; Jill M. Grenier; Laurence Ettwiller; Lorayne P. Jenkins; Dave Ficenec; John D. Martin; Fenyu Jin; Peter S. DiStefano; Andrew R. Wood

Programmed cell death (PCD) during neuronal development and disease has been shown to require de novo RNA synthesis. However, the time course and regulation of target genes is poorly understood. By using a brain-biased array of over 7,500 cDNAs, we profiled this gene expression component of PCD in cerebellar granule neurons challenged separately by potassium withdrawal, combined potassium and serum withdrawal, and kainic acid administration. We found that hundreds of genes were significantly regulated in discreet waves including known genes whose protein products are involved in PCD. A restricted set of genes was regulated by all models, providing evidence that signals inducing PCD can regulate large assemblages of genes (of which a restricted subset may be shared in multiple pathways).


Proceedings of the National Academy of Sciences of the United States of America | 2008

Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities

Benfang Ruan; Kevin Pong; Flora Jow; Mark R. Bowlby; Robert A. Crozier; Danni Liu; Shi Liang; Yi Chen; Mary Lynn T. Mercado; Xidong Feng; Frann Bennett; David von Schack; Leonard A. McDonald; Margaret M. Zaleska; Andrew R. Wood; Peter Reinhart; Ronald L. Magolda; Jerauld Skotnicki; Menelas N. Pangalos; Frank E. Koehn; Guy T. Carter; Magid Abou-Gharbia; Edmund I. Graziani

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the β1-subunit of L-type voltage-dependent Ca2+ channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca2+ channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca2+-induced cell death by modulating Ca2+ channels and promote neurite outgrowth via FKBP52 binding.


BMC Proceedings | 2014

Data for Genetic Analysis Workshop 18: human whole genome sequence, blood pressure, and simulated phenotypes in extended pedigrees

Laura Almasy; Thomas D. Dyer; Juan Manuel Peralta; Goo Jun; Andrew R. Wood; Christian Fuchsberger; Marcio Almeida; Jack W. Kent; Sharon P. Fowler; Thomas W. Blackwell; Sobha Puppala; Satish Kumar; Joanne E. Curran; Donna M. Lehman; Gonçalo R. Abecasis; Ravindranath Duggirala; John Blangero

Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if they were nonsynonymous and predicted to have deleterious effects on protein function or if they were noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence variants in more than 200 genes present on the odd-numbered autosomes individually explained less than 0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with each including data for 849 individuals.


Nature | 2014

Another explanation for apparent epistasis

Andrew R. Wood; Marcus A. Tuke; Michael A. Nalls; Dena Hernandez; Stefania Bandinelli; Andrew Singleton; David Melzer; Luigi Ferrucci; Timothy M. Frayling; Michael N. Weedon

Arising from G. Hemani et al. 508, 249–253 (2014); doi:10.1038/nature1300510.1038/nature13005Epistasis occurs when the effect of a genetic variant on a trait is dependent on genotypes of other variants elsewhere in the genome. Hemani et al. recently reported the detection and replication of many instances of epistasis between pairs of variants influencing gene expression levels in humans. Using whole-genome sequencing data from 450 individuals we strongly replicated many of the reported interactions but, in each case, a single third variant captured by our sequencing data could explain all of the apparent epistasis. Our results provide an alternative explanation for the apparent epistasis observed for gene expression in humans. There is a Reply to this Brief Communication Arising by Hemani, G. et al. Nature 514, http://dx.doi.org/10.1038/nature13692 (2014).


PLOS Genetics | 2016

Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci

Samuel E. Jones; Jessica Tyrrell; Andrew R. Wood; Robin N. Beaumont; Katherine S. Ruth; Marcus A. Tuke; Hanieh Yaghootkar; Youna Hu; Maris Teder-Laving; Caroline Hayward; Till Roenneberg; James F. Wilson; Fabiola M. Del Greco; Andrew A. Hicks; Chol Shin; Chang Ho Yun; Seung Ku Lee; Andres Metspalu; Enda M. Byrne; Philip R. Gehrman; Henning Tiemeier; Karla V. Allebrandt; Rachel M. Freathy; Anna Murray; David A. Hinds; Timothy M. Frayling; Michael N. Weedon

Disrupted circadian rhythms and reduced sleep duration are associated with several human diseases, particularly obesity and type 2 diabetes, but until recently, little was known about the genetic factors influencing these heritable traits. We performed genome-wide association studies of self-reported chronotype (morning/evening person) and self-reported sleep duration in 128,266 white British individuals from the UK Biobank study. Sixteen variants were associated with chronotype (P<5x10-8), including variants near the known circadian rhythm genes RGS16 (1.21 odds of morningness, 95% CI [1.15, 1.27], P = 3x10-12) and PER2 (1.09 odds of morningness, 95% CI [1.06, 1.12], P = 4x10-10). The PER2 signal has previously been associated with iris function. We sought replication using self-reported data from 89,283 23andMe participants; thirteen of the chronotype signals remained associated at P<5x10-8 on meta-analysis and eleven of these reached P<0.05 in the same direction in the 23andMe study. We also replicated 9 additional variants identified when the 23andMe study was used as a discovery GWAS of chronotype (all P<0.05 and meta-analysis P<5x10-8). For sleep duration, we replicated one known signal in PAX8 (2.6 minutes per allele, 95% CI [1.9, 3.2], P = 5.7x10-16) and identified and replicated two novel associations at VRK2 (2.0 minutes per allele, 95% CI [1.3, 2.7], P = 1.2x10-9; and 1.6 minutes per allele, 95% CI [1.1, 2.2], P = 7.6x10-9). Although we found genetic correlation between chronotype and BMI (rG = 0.056, P = 0.05); undersleeping and BMI (rG = 0.147, P = 1x10-5) and oversleeping and BMI (rG = 0.097, P = 0.04), Mendelian Randomisation analyses, with limited power, provided no consistent evidence of causal associations between BMI or type 2 diabetes and chronotype or sleep duration. Our study brings the total number of loci associated with chronotype to 22 and with sleep duration to three, and provides new insights into the biology of sleep and circadian rhythms in humans.


Nature Genetics | 2015

Population genetic differentiation of height and body mass index across Europe

Matthew R. Robinson; Gibran Hemani; Carolina Medina-Gomez; Massimo Mezzavilla; Tonu Esko; Konstantin Shakhbazov; Joseph E. Powell; Anna A. E. Vinkhuyzen; Sonja I. Berndt; Stefan Gustafsson; Anne E. Justice; Bratati Kahali; Adam E. Locke; Tune H. Pers; Sailaja Vedantam; Andrew R. Wood; Wouter van Rheenen; Ole A. Andreassen; Paolo Gasparini; Andres Metspalu; Leonard H. van den Berg; Jan H. Veldink; Fernando Rivadeneira; Thomas Werge; Gonçalo R. Abecasis; Dorret I. Boomsma; Daniel I. Chasman; Eco J. C. de Geus; Timothy M. Frayling; Joel N. Hirschhorn

Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10−8; BMI, P < 5.95 × 10−4), and we find an among-population genetic correlation for tall and slender individuals (r = −0.80, 95% CI = −0.95, −0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).

Collaboration


Dive into the Andrew R. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael N. Weedon

National Institute for Health Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge