Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy M. Frayling is active.

Publication


Featured researches published by Timothy M. Frayling.


Science | 2007

Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Timothy M. Frayling; Katherine S. Elliott; Hana Lango; Nicholas J. Timpson; John Perry; Nigel W. Rayner; Rachel M. Freathy; Jeffrey C. Barrett; Beverley M. Shields; Andrew P. Morris; Sian Ellard; Christopher J. Groves; Lorna W. Harries; Jonathan Marchini; Katharine R. Owen; Beatrice Knight; Lon R. Cardon; M. Walker; Graham A. Hitman; Andrew D. Morris; Alex S. F. Doney; Mark I. McCarthy; Andrew T. Hattersley

The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


Nature Genetics | 2013

Systematic identification of trans eQTLs as putative drivers of known disease associations

Harm-Jan Westra; Marjolein J. Peters; Tonu Esko; Hanieh Yaghootkar; Johannes Kettunen; Mark W. Christiansen; Benjamin P. Fairfax; Katharina Schramm; Joseph E. Powell; Alexandra Zhernakova; Daria V. Zhernakova; Jan H. Veldink; Leonard H. van den Berg; Juha Karjalainen; Sebo Withoff; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira; Peter A. C. 't Hoen; Eva Reinmaa; Krista Fischer; Mari Nelis; Lili Milani; David Melzer; Luigi Ferrucci; Andrew Singleton; Dena Hernandez; Michael A. Nalls; Georg Homuth; Matthias Nauck

Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3′ UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.


PLOS Medicine | 2013

Causal Relationship Between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts

Karani Santhanakrishnan Vimaleswaran; Diane J. Berry; Emmi Tikkanen; Stefan Pilz; Linda T. Hiraki; Jason D. Cooper; Zari Dastani; Denise K. Houston; Andrew R. Wood; Liesbeth Vandenput; Lina Zgaga; Laura M. Yerges-Armstrong; Mark I. McCarthy; Marika Kaakinen; Marcus E. Kleber; Kurt Lohman; Luigi Ferrucci; Liisa Byberg; Lars Lind; Mattias Lorentzon; Veikko Salomaa; Harry Campbell; Malcolm G. Dunlop; Braxton D. Mitchell; Karl-Heinz Herzig; Elizabeth A. Streeten; Evropi Theodoratou; Antti Jula; Nicholas J. Wareham; Claes Ohlsson

A mendelian randomization study based on data from multiple cohorts conducted by Karani Santhanakrishnan Vimaleswaran and colleagues re-examines the causal nature of the relationship between vitamin D levels and obesity.


PLOS Genetics | 2012

The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

Benjamin F. Voight; Hyun Min Kang; Jinhui Ding; C. Palmer; Carlo Sidore; Peter S. Chines; N. P. Burtt; Christian Fuchsberger; Yanming Li; J. Erdmann; Timothy M. Frayling; Iris M. Heid; Anne U. Jackson; Toby Johnson; Tuomas O. Kilpeläinen; Cecilia M. Lindgren; Andrew P. Morris; Inga Prokopenko; Joshua C. Randall; Richa Saxena; Nicole Soranzo; Elizabeth K. Speliotes; Tanya M. Teslovich; Eleanor Wheeler; Jared Maguire; Melissa Parkin; Simon Potter; Nigel W. Rayner; Neil R. Robertson; Kathy Stirrups

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.


Nature Genetics | 2012

Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits

Jian Yang; Teresa Ferreira; Andrew P. Morris; Sarah E. Medland; Pamela A. F. Madden; Andrew C. Heath; Nicholas G. Martin; Grant W. Montgomery; Michael N. Weedon; Ruth J. F. Loos; Timothy M. Frayling; Mark McCarthy; Joel N. Hirschhorn; Michael E. Goddard; Peter M. Visscher

We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.


Nature Genetics | 2011

Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci

Jaspal S. Kooner; Danish Saleheen; Xueling Sim; Joban Sehmi; Weihua Zhang; Philippe Frossard; Latonya F. Been; Kee Seng Chia; Antigone S. Dimas; Neelam Hassanali; Tazeen H. Jafar; Jeremy B. M. Jowett; Xinzhong Li; Venkatesan Radha; Simon D. Rees; Fumihiko Takeuchi; Robin Young; Tin Aung; Abdul Basit; Manickam Chidambaram; Debashish Das; Elin Grundberg; Åsa K. Hedman; Zafar I. Hydrie; Muhammed Islam; Chiea Chuen Khor; Sudhir Kowlessur; Malene M. Kristensen; Samuel Liju; Wei-Yen Lim

We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10−4 for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10−8 to P = 1.9 × 10−11). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10−4), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.


Nature Genetics | 2007

A common variant of HMGA2 is associated with adult and childhood height in the general population

Michael N. Weedon; Guillaume Lettre; Rachel M. Freathy; Cecilia M. Lindgren; Benjamin F. Voight; John Perry; Katherine S. Elliott; Rachel Hackett; Candace Guiducci; Beverley M. Shields; Eleftheria Zeggini; Hana Lango; Valeriya Lyssenko; Nicholas J. Timpson; Noël P. Burtt; Nigel W. Rayner; Richa Saxena; Kristin Ardlie; Jonathan H Tobias; Andy R Ness; Susan M. Ring; Colin N. A. Palmer; Andrew D. Morris; Leena Peltonen; Veikko Salomaa; George Davey Smith; Leif Groop; Andrew T. Hattersley; Mark I. McCarthy; Joel N. Hirschhorn

Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 × 10−8). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 × 10−11, overall P = 4 × 10−16, including the genome-wide association data). We also observed the association in children (P = 1 × 10−6, N = 6,827) and a tall/short case-control study (P = 4 × 10−6, N = 3,207). We estimate that rs1042725 explains ∼0.3% of population variation in height (∼0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitativetraits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.


Nature Genetics | 2007

Common variants in WFS1 confer risk of type 2 diabetes

Manjinder S. Sandhu; Michael N. Weedon; Katherine Fawcett; Jon Wasson; Sally L Debenham; Allan Daly; Hana Lango; Timothy M. Frayling; Rosalind J Neumann; Richard Sherva; Ilana Blech; Paul Pharoah; Colin N. A. Palmer; Charlotte H. Kimber; Roger Tavendale; Andrew D. Morris; Mark McCarthy; Mark Walker; Graham A. Hitman; Benjamin Glaser; M. Alan Permutt; Andrew T. Hattersley; Nicholas J. Wareham; Inês Barroso

We studied genes involved in pancreatic β cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.


American Journal of Human Genetics | 2008

Population-Based Genome-wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver Enzymes

Xin Yuan; Dawn M. Waterworth; John Perry; Noha Lim; Kijoung Song; John Chambers; Weihua Zhang; Peter Vollenweider; Heide A. Stirnadel; Toby Johnson; Sven Bergmann; Noam D. Beckmann; Yun Li; Luigi Ferrucci; David Melzer; Dena Hernandez; Andrew Singleton; James Scott; Paul Elliott; Gérard Waeber; Lon R. Cardon; Timothy M. Frayling; Jaspal S. Kooner; Vincent Mooser

Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.

Collaboration


Dive into the Timothy M. Frayling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham A. Hitman

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Eleftheria Zeggini

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge