Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Ridsdale is active.

Publication


Featured researches published by Andrew Ridsdale.


Optics Express | 2009

Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator

Adrian F. Pegoraro; Andrew Ridsdale; Douglas J. Moffatt; Yiwei Jia; John Paul Pezacki; Albert Stolow

We demonstrate high performance coherent anti-Stokes Raman scattering (CARS) microscopy of live cells and tissues with user-variable spectral resolution and broad Raman tunability (2500 - 4100 cm(-1)), using a femtosecond Ti:Sapphire pump and photonic crystal fiber output for the broadband synchronized Stokes pulse. Spectral chirp of the fs laser pulses was a user-variable parameter for optimization in a spectral focusing implementation of multimodal CARS microscopy. High signal-to-noise, high contrast multimodal imaging of live cells and tissues was achieved with pixel dwell times of 2-8 micros and low laser powers (< 30 mW total).


Nature Medicine | 2007

Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy

Ileana Micu; Andrew Ridsdale; Lingqing Zhang; John Woulfe; Jeff McClintock; Christine A. Brantner; S. Brian Andrews; Peter K. Stys

Here we describe a technique for measuring changes in Ca2+ in the cytosolic domain of mature compact myelin of live axons in the central nervous system (CNS). We label the myelin sheath of optic nerve and dorsal column axons by using the Ca2+ indicator X-rhod-1 coupled with DiOC6(3) to produce bright myelin counterstaining, thereby providing unambiguous identification of the myelin sheath for analysis of two-photon excited fluorescence. We present evidence for localization of the Ca2+ reporter to the cytosolic domain of myelin, obtained by using fluorescence lifetime, spectral measurements and Mn2+ quenching. Chemical ischemia increased myelinic X-rhod-1 fluorescence (∼50% after 30 min) in a manner dependent on extracellular Ca2+. Inhibiting Na+-dependent glutamate transporters (with TBOA) or glycine transporters (with sarcosine and ALX-1393) reduced the ischemia-induced increase in Ca2+. We show that myelinic N-methyl-D-aspartate (NMDA) receptors are activated by the two conventional coagonists glutamate and glycine, which are released by specific transporters under conditions of cellular Na+ loading and depolarization in injured white matter. This new technique facilitates detailed studies of living myelin, a vital component of the mammalian CNS.


Optics Express | 2009

All-fiber CARS microscopy of live cells.

Adrian F. Pegoraro; Andrew Ridsdale; Douglas J. Moffatt; John Paul Pezacki; Brian K. Thomas; Libin Fu; Liang Dong; Martin E. Fermann; Albert Stolow

Using an all-fiber laser system consisting of a femtosecond Er/Yb fiber oscillator as the pump and an ultra-highly nonlinear fiber for Stokes generation, we demonstrate multimodal (TPF+SHG+CARS) non-linear optical microscopy of both tissue samples and live cells. Multimodal imaging was successfully performed with pixel dwell times as short as 4 micros at low laser powers (< 40 mW total).


Optics Express | 2007

Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths

Sangeeta Murugkar; Craig Brideau; Andrew Ridsdale; Majid Naji; Peter K. Stys; Hanan Anis

We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy of lipid-rich structures using a single unamplified femtosecond Ti:sapphire laser and a photonic crystal fiber (PCF) with two closely lying zero dispersion wavelengths (ZDW) for the Stokes source. The primary enabling factor for the fast data acquisition (84 micros per pixel) in the proof-of-principle CARS images, is the low noise supercontinuum (SC) generated in this type of PCF, in contrast to SC generated in a PCF with one ZDW. The dependence of the Stokes pulse on average input power, pump wavelength, pulse duration and polarization is experimentally characterized. We show that it is possible to control the spectral shape of the SC by tuning the pump wavelength of the input pulse and the consequence for CARS microscopy is discussed.


Biochemical and Biophysical Research Communications | 2010

Dynamics of lipid droplets induced by the hepatitis C virus core protein

Rodney K. Lyn; David C. Kennedy; Albert Stolow; Andrew Ridsdale; John Paul Pezacki

The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.


Journal of Neuroscience Methods | 2000

Calcium imaging in live rat optic nerve myelinated axons in vitro using confocal laser microscopy.

Yubo Ren; Andrew Ridsdale; Elaine Coderre; Peter K. Stys

Intracellular Ca(2+) plays a major role in the physiological responses of excitable cells, and excessive accumulation of internal Ca(2+) is a key determinant of cell injury and death. Many studies have been carried out on the internal Ca(2+) dynamics in neurons. In constrast, there is virtually no such information for mammalian central myelinated axons, due in large part to technical difficulty with dye loading and imaging such fine myelinated structures. We developed a technique to allow imaging of ionized Ca(2+) in live rat optic nerve axons with simultaneous electrophysiological recording in vitro at 37 degrees C using confocal microscopy. The K(+) salt of the Ca(2+)-sensitive indicator Oregon Green 488 BAPTA-2 and the Ca(2+)-insensitive reference dye Sulforhodamine 101 were loaded together into rat optic nerves using a low-Ca(2+)/low-Na(+) solution. Axonal profiles, confirmed immunohistochemically by double staining with neurofilament-160 antibodies, were clearly visualized by S101 fluorescence up to 800 microm from the cut ends. The Ca(2+) signal was very low at rest, just above the background fluorescence intensity, indicating healthy tissue, and increased significantly after caffeine (20 mM) exposure designed to release internal Ca(2+) stores. The health of imaged regions was further confirmed by a virtual absence of spectrin breakdown, which is induced by calpain activation in damaged CNS tissue. Red and green fluorescence decayed to no less than 70% of control after 60 min of recording at 37 degrees C, with the green:red fluorescence ratio increasing slightly by 21% after 60 min. Electrophysiological responses recorded simultaneously with confocal images remained largely stable as well.


Journal of Biomedical Optics | 2010

Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits.

Alex C.-T. Ko; Andrew Ridsdale; Michael S. D. Smith; Leila B. Mostaço-Guidolin; Mark Hewko; Adrian F. Pegoraro; Elicia Kohlenberg; Bernhard J. Schattka; Masashi Shiomi; Albert Stolow; Michael G. Sowa

Label-free imaging of bulk arterial tissue is demonstrated using a multimodal nonlinear optical microscope based on a photonic crystal fiber and a single femtosecond oscillator operating at 800 nm. Colocalized imaging of extracellular elastin fibers, fibrillar collagen, and lipid-rich structures within aortic tissue obtained from atherosclerosis-prone myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits is demonstrated through two-photon excited fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering, respectively. These images are shown to differentiate healthy arterial wall, early atherosclerotic lesions, and advanced plaques. Clear pathological changes are observed in the extracellular matrix of the arterial wall and correlated with progression of atherosclerotic disease as represented by the age of the WHHLMI rabbits.


Journal of Biophotonics | 2014

Hyperspectral multimodal CARS microscopy in the fingerprint region

Adrian F. Pegoraro; Aaron D. Slepkov; Andrew Ridsdale; Douglas J. Moffatt; Albert Stolow

A simple scheme for multimodal coherent anti-Stokes Raman scattering (CARS) microscopy is based on the spectral focusing of ultrafast-oscillator-derived pump/probe light and synchronous photonic crystal fiber (PCF) fiber-generated broadband Stokes light. To date, such schemes allowed rapid hyperspectral imaging throughout the CH/OH high frequency region (2700-4000 cm(-1) ). Here we extend this approach to the middle (1640-3300 cm(-1) ) and fingerprint regions (850-1800 cm(-1) ) of the Raman spectrum. Our simple integrated approach to rapid hyperspectral CARS microscopy in the fingerprint region is demonstrated by applications to label-free multimodal imaging of cellulose and bulk bone, including use of the phosphate resonance at 960 cm(-1) .


Biomedical Optics Express | 2010

Multimodal CARS microscopy of structured carbohydrate biopolymers

Aaron D. Slepkov; Andrew Ridsdale; Adrian F. Pegoraro; Douglas J. Moffatt; Albert Stolow

We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials.


Biomedical Optics Express | 2010

Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging

Leila B. Mostaço-Guidolin; Michael G. Sowa; Andrew Ridsdale; Adrian F. Pegoraro; Michael S. D. Smith; Mark Hewko; Elicia K. Kohlenberg; Bernie Schattka; Masashi Shiomi; Albert Stolow; Alex C.-T. Ko

A femtosecond CARS-based nonlinear optical microscope was used to simultaneously image extracellular structural proteins and lipid-rich structures within intact aortic tissue obtained from myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits (WHHLMI). Clear differences in the NLO microscopic images were observed between healthy arterial tissue and regions dominated by atherosclerotic lesions. In the current ex-vivo study, we present a single parameter based on intensity changes derived from multi-channel NLO image to classify plaque burden within the vessel. Using this parameter we were able to differentiate between healthy regions of the vessel and regions with plaque, as well as distinguish plaques relative to the age of the WHHLMI rabbit.

Collaboration


Dive into the Andrew Ridsdale's collaboration.

Top Co-Authors

Avatar

Albert Stolow

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Sowa

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex C.-T. Ko

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge