Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Paul Pezacki is active.

Publication


Featured researches published by John Paul Pezacki.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genomic analysis of the host response to hepatitis C virus infection

Andrew I. Su; John Paul Pezacki; Lisa Wodicka; Amy D. Brideau; Lubica Supekova; Robert Thimme; Stefan Wieland; Jens Bukh; Robert H. Purcell; Peter G. Schultz; Francis V. Chisari

We have examined the progression of hepatitis C virus (HCV) infections by gene expression analysis of liver biopsies in acutely infected chimpanzees that developed persistent infection, transient viral clearance, or sustained clearance. Both common responses and outcome-specific changes in expression were observed. All chimpanzees showed gene expression patterns consistent with an IFN-α response that correlated with the magnitude and duration of infection. Transient and sustained viral clearance were uniquely associated with induction of IFN-γ-induced genes and other genes involved in antigen processing and presentation and the adaptive immune response. During the early stages of infection, host genes involved in lipid metabolism were also differentially regulated. We also show that drugs that affect these biosynthetic pathways can regulate HCV replication in HCV replicon systems. Our results reveal genome-wide transcriptional changes that reflect the establishment, spread, and control of infection, and they reveal potentially unique antiviral programs associated with clearance of HCV infection.


Journal of the American Chemical Society | 2011

Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions

David C. Kennedy; Craig S. McKay; Marc C.B. Legault; Dana C. Danielson; Jessie A. Blake; Adrian F. Pegoraro; Albert Stolow; Zoltan Mester; John Paul Pezacki

Copper toxicity is a critical issue in the development of copper-based catalysts for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions for applications in living systems. The effects and related toxicity of copper on mammalian cells are dependent on the ligand environment. Copper complexes can be highly toxic, can induce changes in cellular metabolism, and can be rapidly taken up by cells, all of which can affect their ability to function as catalysts for CuAAC in living systems. Herein, we have evaluated the effects of a number of copper complexes that are typically used to catalyze CuAAC reactions on four human cell lines by measuring mitochondrial activity based on the metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to study toxicity, inductively coupled plasma mass spectrometry to study cellular uptake, and coherent anti-Stokes Raman scattering (CARS) microscopy to study effects on lipid metabolism. We find that ligand environment around copper influences all three parameters. Interestingly, for the Cu(II)-bis-L-histidine complex (Cu(his)(2)), cellular uptake and metabolic changes are observed with no toxicity after 72 h at micromolar concentrations. Furthermore, we show that under conditions where other copper complexes kill human hepatoma cells, Cu(I)-L-histidine is an effective catalyst for CuAAC labeling of live cells following metabolic incorporation of an alkyne-labeled sugar (Ac(4)ManNAl) into glycosylated proteins expressed on the cell surface. This result suggests that Cu(his)(2) or derivatives thereof have potential for in vivo applications where toxicity as well as catalytic activity are critical factors for successful bioconjugation reactions.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice

Andrew I. Su; Luca G. Guidotti; John Paul Pezacki; Francis V. Chisari; Peter G. Schultz

Understanding the gene-expression patterns during liver regeneration may help to reveal how regenerative processes are initiated and controlled as well as shed new light onto processes that lead to liver disease. Using high-density oligonucleotide arrays, we have examined the gene-expression program in the livers of mice after partial hepatectomy. A time course was constructed for gene expression between 0 and 4 h after partial hepatectomy, corresponding to the priming phase of liver regeneration. The genomic program for liver regeneration involves transcription-factor generation, stress and inflammatory responses, cytoskeletal and extracellular matrix modification, and regulation of cell-cycle entry. The genome-wide changes that are observed provide a detailed and comprehensive map of the initial priming stage of liver regeneration.


Nature Chemical Biology | 2011

Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy

John Paul Pezacki; Jessie A. Blake; Dana C. Danielson; David C. Kennedy; Rodney K. Lyn; Ragunath Singaravelu

The nonlinear variant of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, combines powerful Raman signal enhancement with several other advantages such as label-free detection and has been used to image various cellular processes including host-pathogen interactions and lipid metabolism.


Optics Express | 2009

Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator

Adrian F. Pegoraro; Andrew Ridsdale; Douglas J. Moffatt; Yiwei Jia; John Paul Pezacki; Albert Stolow

We demonstrate high performance coherent anti-Stokes Raman scattering (CARS) microscopy of live cells and tissues with user-variable spectral resolution and broad Raman tunability (2500 - 4100 cm(-1)), using a femtosecond Ti:Sapphire pump and photonic crystal fiber output for the broadband synchronized Stokes pulse. Spectral chirp of the fs laser pulses was a user-variable parameter for optimization in a spectral focusing implementation of multimodal CARS microscopy. High signal-to-noise, high contrast multimodal imaging of live cells and tissues was achieved with pixel dwell times of 2-8 micros and low laser powers (< 30 mW total).


Journal of the American Chemical Society | 2013

Three-Mode Electrochemical Sensing of Ultralow MicroRNA Levels

Mahmoud Labib; Nasrin Khan; Shahrokh M. Ghobadloo; Jenny Cheng; John Paul Pezacki; Maxim V. Berezovski

MicroRNAs (miRNAs) are an emerging class of biomarkers that are frequently deregulated in cancer cells and have shown great promise for cancer classification and prognosis. In this work, we developed a three-mode electrochemical sensor for detection and quantitation of ultralow levels of miRNAs in a wide dynamic range of measured concentrations. The sensor facilitates three detection modalities based on hybridization (H-SENS), p19 protein binding (P-SENS), and protein displacement (D-SENS). The combined three-mode sensor (HPD-SENS) identifies as low as 5 aM or 90 molecules of miRNA per 30 μL of sample without PCR amplification, and can be operated within the dynamic range from 10 aM to 1 μM. The HPD sensor is made on a commercially available gold nanoparticles-modified electrode and is suitable for analyzing multiple miRNAs on a single electrode. This three-mode sensor exhibits high selectivity and specificity and was used for sequential analysis of miR-32 and miR-122 on one electrode. In addition, the H-SENS can recognize miRNAs with different A/U and G/C content and distinguish between a fully matched miRNA and a miRNA comprising either a terminal or a middle single base mutation. Furthermore, the H- and P-SENS were successfully employed for direct detection and profiling of three endogenous miRNAs, including hsa-miR-21, hsa-miR-32, and hsa-miR-122 in human serum, and the sensor results were validated by qPCR.


Journal of Biological Chemistry | 2008

Identification of Human Kinases Involved in Hepatitis C Virus Replication by Small Interference RNA Library Screening

Lubica Supekova; Frantisek Supek; Jong-Kook Lee; Shawn Chen; Nathanael S. Gray; John Paul Pezacki; Achim Schlapbach; Peter G. Schultz

The propagation of the hepatitis C virus (HCV) is a complex process that requires both host and viral proteins. To facilitate identification of host cell factors that are required for HCV replication, we screened a panel of small interference RNAs that preferentially target human protein kinases using an HCV replicon expressing the firefly luciferase gene as a genetic reporter. Small interference RNAs specific for three human kinases, Csk, Jak1, and Vrk1, were identified that reproducibly reduce viral RNA and viral protein levels in HCV replicon-bearing cells. Treatment of replicon cells with a small molecule inhibitor of Csk also resulted in a significant reduction in HCV RNA and proteins, further supporting a role for Csk in HCV replication. The effects of siRNAs targeting eight kinases known to be negatively regulated by Csk were then examined; knock down of one of these kinases, Fyn, resulted in up-regulation of the HCV replicon, suggesting that Csk mediates its effect on HCV replication through Fyn. This conclusion was further corroborated by demonstration that replicon cells treated with Csk inhibitor contained lower levels of the phosphorylated form of Fyn than control cells.


Analytical Chemistry | 2011

Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis.

Nasrin Khan; Jenny Cheng; John Paul Pezacki; Maxim V. Berezovski

MicroRNAs (miRNAs) are small (∼22 nt) regulatory RNAs that are frequently deregulated in cancer and have shown promise as tissue- and blood-based biomarkers for cancer classification and prognostication. Here we present a protein-facilitated affinity capillary electrophoresis (ProFACE) assay for rapid quantification of miRNA levels in blood serum using single-stranded DNA binding protein (SSB) and double-stranded RNA binding protein (p19) as separation enhancers. The method utilizes either the selective binding of SSB to a single-stranded DNA/RNA probe or the binding of p19 to miRNA-RNA probe duplex. For the detection of ultralow amounts of miRNA without polymerase chain reaction (PCR) amplification in blood samples we apply off-line preconcentration of synthetic miRNA-122 from serum by p19-coated magnetic beads followed by online sample stacking in the ProFACE assay. The detection limit is 0.5 fM or 30 000 miRNA molecules in 1 mL of serum as a potential source of naïve miRNAs.


Journal of Virology | 2008

Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses.

Matthew P. Davis; Selena M. Sagan; John Paul Pezacki; David J. Evans; Peter Simmonds

ABSTRACT By the analysis of thermodynamic RNA secondary structure predictions, we previously obtained evidence for evolutionarily conserved large-scale ordering of RNA virus genomes (P. Simmonds, A. Tuplin, and D. J. Evans, RNA 10:1337-1351, 2004). Genome-scale ordered RNA structure (GORS) was widely distributed in many animal and plant viruses, much greater in extent than RNA structures required for viral translation or replication, but in mammalian viruses was associated with host persistence. To substantiate the existence of large-scale RNA structure differences between viruses, a large set of alignments of mammalian RNA viruses and rRNA sequences as controls were examined by thermodynamic methods (to calculate minimum free energy differences) and by algorithmically independent RNAz and Pfold methods. These methods produced generally concordant results and identified substantial differences in the degrees of evolutionarily conserved, sequence order-dependent RNA secondary structure between virus genera and groups. A probe hybridization accessibility assay was used to investigate the physical nature of GORS. Transcripts of hepatitis C virus (HCV), hepatitis G virus/GB virus-C (HGV/GBV-C), and murine norovirus, which are predicted to be structured, were largely inaccessible to hybridization in solution, in contrast to the almost universal binding of probes to a range of unstructured virus transcripts irrespective of G+C content. Using atomic force microscopy, HCV and HGV/GBV-C RNA was visualized as tightly compacted prolate spheroids, while under the same experimental conditions the predicted unstructured poliovirus and rubella virus RNA were pleomorphic and had extensively single-stranded RNA on deposition. Bioinformatic and physical characterization methods both identified fundamental differences in the configurations of viral genomic RNA that may modify their interactions with host cell defenses and their ability to persist.


Circulation Research | 2015

Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis

Denuja Karunakaran; A. Brianne Thrush; My-Anh Nguyen; Laura Richards; Michele Geoffrion; Ragunath Singaravelu; Eleni Ramphos; Prakriti Shangari; Mireille Ouimet; John Paul Pezacki; Kathryn J. Moore; Ljubica Perisic; Lars Maegdefessel; Ulf Hedin; Mary-Ellen Harper; Katey J. Rayner

RATIONALE Therapeutically targeting macrophage reverse cholesterol transport is a promising approach to treat atherosclerosis. Macrophage energy metabolism can significantly influence macrophage phenotype, but how this is controlled in foam cells is not known. Bioinformatic pathway analysis predicts that miR-33 represses a cluster of genes controlling cellular energy metabolism that may be important in macrophage cholesterol efflux. OBJECTIVE We hypothesized that cellular energy status can influence cholesterol efflux from macrophages, and that miR-33 reduces cholesterol efflux via repression of mitochondrial energy metabolism pathways. METHODS AND RESULTS In this study, we demonstrated that macrophage cholesterol efflux is regulated by mitochondrial ATP production, and that miR-33 controls a network of genes that synchronize mitochondrial function. Inhibition of mitochondrial ATP synthase markedly reduces macrophage cholesterol efflux capacity, and anti-miR33 required fully functional mitochondria to enhance ABCA1-mediated cholesterol efflux. Specifically, anti-miR33 derepressed the novel target genes PGC-1α, PDK4, and SLC25A25 and boosted mitochondrial respiration and production of ATP. Treatment of atherosclerotic Apoe(-/-) mice with anti-miR33 oligonucleotides reduced aortic sinus lesion area compared with controls, despite no changes in high-density lipoprotein cholesterol or other circulating lipids. Expression of miR-33a/b was markedly increased in human carotid atherosclerotic plaques compared with normal arteries, and there was a concomitant decrease in mitochondrial regulatory genes PGC-1α, SLC25A25, NRF1, and TFAM, suggesting these genes are associated with advanced atherosclerosis in humans. CONCLUSIONS This study demonstrates that anti-miR33 therapy derepresses genes that enhance mitochondrial respiration and ATP production, which in conjunction with increased ABCA1 expression, works to promote macrophage cholesterol efflux and reduce atherosclerosis.

Collaboration


Dive into the John Paul Pezacki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodney K. Lyn

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Stolow

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Nasheri

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Cheng

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge