Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Lang is active.

Publication


Featured researches published by Andrew S. Lang.


Nature Biotechnology | 2004

Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.

Frank W. Larimer; Patrick Chain; Loren Hauser; Jane E. Lamerdin; Stephanie Malfatti; Long Do; Miriam Land; Dale A. Pelletier; Thomas G. Beatty; Andrew S. Lang; F. Robert Tabita; Janet L. Gibson; Cedric Bobst; Janelle L. Torres y Torres; Caroline Peres; Faith H. Harrison; Jane Gibson; Caroline S. Harwood

Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant–derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.


Science | 2006

Metagenomic Analysis of Coastal RNA Virus Communities

Alexander I. Culley; Andrew S. Lang; Curtis A. Suttle

RNA viruses infect marine organisms from bacteria to whales, but RNA virus communities in the sea remain essentially unknown. Reverse-transcribed whole-genome shotgun sequencing was used to characterize the diversity of uncultivated marine RNA virus assemblages. A diverse assemblage of RNA viruses, including a broad group of marine picorna-like viruses, and distant relatives of viruses infecting arthropods and higher plants were found. Communities were dominated by distinct genotypes with small genome sizes, and we completely assembled the genomes of several hitherto undiscovered viruses. Our results show that the oceans are a reservoir of previously unknown RNA viruses.


Nature Reviews Microbiology | 2012

Gene transfer agents: phage-like elements of genetic exchange.

Andrew S. Lang; Olga Zhaxybayeva; J. Thomas Beatty

Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cells genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production.


Nature | 2003

High diversity of unknown picorna-like viruses in the sea

Alexander I. Culley; Andrew S. Lang; Curtis A. Suttle

Picorna-like viruses are a loosely defined group of positive-sense single-stranded RNA viruses that are major pathogens of animals, plants and insects. They include viruses that are of enormous economic and public-health concern and are responsible for animal diseases (such as poliomyelitis), plant diseases (such as sharka) and insect diseases (such as sacbrood). Viruses from the six divergent families (the Picornaviridae, Caliciviridae, Comoviridae, Sequiviridae, Dicistroviridae and Potyviridae) that comprise the picorna-like virus superfamily have the following features in common: a genome with a protein attached to the 5′ end and no overlapping open reading frames, all the RNAs are translated into a polyprotein before processing, and a conserved RNA-dependent RNA polymerase (RdRp) protein. Analyses of RdRp sequences from these viruses produce phylogenies that are congruent with established picorna-like virus family assignments; hence, this gene is an excellent molecular marker for examining the diversity of picorna-like viruses in nature. Here we report, on the basis of analysis of RdRp sequences amplified from marine virus communities, that a diverse array of picorna-like viruses exists in the ocean. All of the sequences amplified were divergent from known picorna-like viruses, and fell within four monophyletic groups that probably belong to at least two new families. Moreover, we show that an isolate belonging to one of these groups is a lytic pathogen of Heterosigma akashiwo, a toxic-bloom-forming alga responsible for severe economic losses to the finfish aquaculture industry, suggesting that picorna-like viruses are important pathogens of marine phytoplankton.


Journal of Phycology | 2003

CHARACTERIZATION OF HaRNAV, A SINGLE-STRANDED RNA VIRUS CAUSING LYSIS OF HETEROSIGMA AKASHIWO (RAPHIDOPHYCEAE)1

Vera Tai; Janice E. Lawrence; Andrew S. Lang; Amy M. Chan; Alexander I. Culley; Curtis A. Suttle

HaRNAV, a novel virus that infects the toxic bloom‐forming alga Heterosigma akashiwo (Hada) Hada ex Hada et Chihara, was characterized based on morphology, pathology, nucleic acid type, structural proteins, and the range of host strains that it infects. HaRNAV is a 25‐nm single‐stranded RNA (ssRNA) virus with a genome size of approximately 9100 nucleotides. This is the first report of an ssRNA virus that causes lysis of a phytoplankton species. The virus particle is sensitive to chloroform and contains at least five structural proteins ranging in apparent size from 24 to 34 kDa. HaRNAV infection causes swelling of the endoplasmic reticulum and progeny virus particles assemble in the cytoplasm of the host, frequently in crystalline arrays. The infectivity of HaRNAV was tested against 15 strains of H. akashiwo isolated from Japanese waters, the Northeast Pacific, and the Northwest Atlantic. HaRNAV caused lysis of three strains from the Northeast Pacific and two strains from Japan but none from the Northwest Atlantic. The characterization of HaRNAV demonstrates that HaRNAV is a novel type of phytoplankton virus but has some similarities with plant viruses belonging to the Sequiviridae and to other known ssRNA viruses. Further genomic analysis, however, is necessary to determine any phylogenetic relationships. The discovery of HaRNAV emphasizes the diversity of H. akashiwo viral pathogens and, more importantly, algal–virus pathogens and the complexity of virus–host interactions in the environment.


Fems Microbiology Reviews | 2009

RNA viruses in the sea

Andrew S. Lang; Matthew L. Rise; Alexander I. Culley; Grieg F. Steward

Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.


Journal of General Virology | 2008

Prevalence and diversity of avian influenza viruses in environmental reservoirs

Andrew S. Lang; Anke Kelly; Jonathan A. Runstadler

Little is known about the ecology and evolution of avian influenza in the natural environment, despite how these affect the potential for transmission. Most work has focused on characterizing viruses isolated from hosts such as waterfowl, and there have also been several instances of isolation and detection from abiotic sources such as water and ice. We used RT-PCR to amplify and characterize the influenza virus sequences present in sediments of ponds that are used heavily by waterfowl. The detection rate of influenza virus was high (>50%). Characterization of the viruses present by sequencing part of the haemagglutinin (HA) gene showed that there is a diverse collection of viruses in these sediments. We sequenced 117 partial HA gene clones from 11 samples and detected four different HA subtypes (H3, H8, H11 and H12), with approximately 65% of clone sequences being unique. This culture-independent approach was also able to detect a virus subtype that was not found by sampling of birds in the same geographical region in the same year. Viruses were detected readily in the winter when the ponds were frozen, indicating that these sediments could be a year-to-year reservoir of viruses to infect birds using the ponds, although we have not shown that these viruses are viable. We demonstrate that this approach is a feasible and valuable way to assess the prevalence and diversity of viruses present in the environment, and can be a valuable complement to more difficult viral culturing in attempting to understand the ecology of influenza viruses.


Archives of Microbiology | 2001

The gene transfer agent of Rhodobacter capsulatus and "constitutive transduction" in prokaryotes.

Andrew S. Lang; J. Thomas Beatty

Abstract. Transduction, bacteriophage-mediated gene transfer, is thought to play an important role in the evolution of prokaryote genomes. Several gene transfer agents that resemble transducing phages have been found in diverse prokaryotes. This mini-review discusses these interesting agents of genetic exchange with a focus on the gene transfer agent (GTA) of Rhodobacter capsulatus, at present the only member of this group for which genetic information exists about the production of transducing particles. Production of GTA results from expression of genes that are similar to phage genes, yet transcription of these genes is dependent upon cellular (two-component) signaling proteins. The significance of these relationships, as well as the finding of GTA gene homologues in the bacterium Rhodopseudomonas palustris, is discussed.


Virology Journal | 2007

The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities

Alexander I. Culley; Andrew S. Lang; Curtis A. Suttle

BackgroundRNA viruses have been isolated that infect marine organisms ranging from bacteria to whales, but little is known about the composition and population structure of the in situ marine RNA virus community. In a recent study, the majority of three genomes of previously unknown positive-sense single-stranded (ss) RNA viruses were assembled from reverse-transcribed whole-genome shotgun libraries. The present contribution comparatively analyzes these genomes with respect to representative viruses from established viral taxa.ResultsTwo of the genomes (JP-A and JP-B), appear to be polycistronic viruses in the proposed order Picornavirales that fall into a well-supported clade of marine picorna-like viruses, the characterized members of which all infect marine protists. A temporal and geographic survey indicates that the JP genomes are persistent and widespread in British Columbia waters. The third genome, SOG, encodes a putative RNA-dependent RNA polymerase (RdRp) that is related to the RdRp of viruses in the family Tombusviridae, but the remaining SOG sequence has no significant similarity to any sequences in the NCBI database.ConclusionThe complete genomes of these viruses permitted analyses that resulted in a more comprehensive comparison of these pathogens with established taxa. For example, in concordance with phylogenies based on the RdRp, our results support a close homology between JP-A and JP-B and RsRNAV. In contrast, although classification of the SOG genome based on the RdRp places SOG within the Tombusviridae, SOG lacks a capsid and movement protein conserved within this family and SOG is thus likely more distantly related to the Tombusivridae than the RdRp phylogeney indicates.


Molecular Microbiology | 2012

DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA.

Alexander P. Hynes; Ryan G. Mercer; David E. Watton; Colleen Buckley; Andrew S. Lang

Rhodobacter capsulatus produces a gene transfer agent (GTA) called RcGTA. RcGTA is a phage‐like particle that packages R. capsulatus DNA and transfers it to other R. capsulatus cells. We quantified the relative frequency of packaging for each gene in the genome by hybridization of DNA from RcGTA particles to an R. capsulatus microarray. All genes were found within the RcGTA particles. However, the genes encoding the RcGTA particle were under‐packaged compared with other regions. Gene transfer bioassays confirmed that the transfer of genes within the RcGTA structural cluster is reduced relative to those of other genes. Single‐cell expression analysis, by flow cytometry analysis of cells containing RcGTA‐reporter gene fusion constructs, demonstrated that RcGTA gene expression is not uniform within a culture. This phenomenon was accentuated when the constructs were placed in a strain lacking a putative lysis gene involved in RcGTA release; a small subpopulation was found to be responsible for ∼ 95% of RcGTA activity. We propose a mechanism whereby high levels of RcGTA gene transcription in the most active RcGTA‐producing cells cause a reduction in their packaging frequency. This subpopulations role in producing and releasing the RcGTA particles explains the lack of observed cell lysis in cultures.

Collaboration


Dive into the Andrew S. Lang's collaboration.

Top Co-Authors

Avatar

J. Thomas Beatty

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Canuti

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Curtis A. Suttle

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hannah J. Munro

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Ryan G. Mercer

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge