Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan G. Mercer is active.

Publication


Featured researches published by Ryan G. Mercer.


Molecular Microbiology | 2012

DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA.

Alexander P. Hynes; Ryan G. Mercer; David E. Watton; Colleen Buckley; Andrew S. Lang

Rhodobacter capsulatus produces a gene transfer agent (GTA) called RcGTA. RcGTA is a phage‐like particle that packages R. capsulatus DNA and transfers it to other R. capsulatus cells. We quantified the relative frequency of packaging for each gene in the genome by hybridization of DNA from RcGTA particles to an R. capsulatus microarray. All genes were found within the RcGTA particles. However, the genes encoding the RcGTA particle were under‐packaged compared with other regions. Gene transfer bioassays confirmed that the transfer of genes within the RcGTA structural cluster is reduced relative to those of other genes. Single‐cell expression analysis, by flow cytometry analysis of cells containing RcGTA‐reporter gene fusion constructs, demonstrated that RcGTA gene expression is not uniform within a culture. This phenomenon was accentuated when the constructs were placed in a strain lacking a putative lysis gene involved in RcGTA release; a small subpopulation was found to be responsible for ∼ 95% of RcGTA activity. We propose a mechanism whereby high levels of RcGTA gene transcription in the most active RcGTA‐producing cells cause a reduction in their packaging frequency. This subpopulations role in producing and releasing the RcGTA particles explains the lack of observed cell lysis in cultures.


Journal of Bacteriology | 2010

Loss of the Response Regulator CtrA Causes Pleiotropic Effects on Gene Expression but Does Not Affect Growth Phase Regulation in Rhodobacter capsulatus

Ryan G. Mercer; Stephen J. Callister; Mary S. Lipton; Ljiljana Paša-Tolić; Hynek Strnad; Václav Pačes; J. Thomas Beatty; Andrew S. Lang

The purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus has been extensively studied for its metabolic versatility as well as for production of a gene transfer agent called RcGTA. Production of RcGTA is highest in the stationary phase of growth and requires the response regulator protein CtrA. The CtrA protein in Caulobacter crescentus has been thoroughly studied for its role as an essential, master regulator of the cell cycle. Although the CtrA protein in R. capsulatus shares a high degree of sequence similarity with the C. crescentus protein, it is nonessential and clearly plays a different role in this bacterium. We have used transcriptomic and proteomic analyses of wild-type and ctrA mutant cultures to identify the genes dysregulated by the loss of CtrA in R. capsulatus. We have also characterized gene expression differences between the logarithmic and stationary phases of growth. Loss of CtrA has pleiotropic effects, with dysregulation of expression of approximately 6% of genes in the R. capsulatus genome. This includes all flagellar motility genes and a number of other putative regulatory proteins but does not appear to include any genes involved in the cell cycle. Quantitative proteomic data supported 88% of the CtrA transcriptome results. Phylogenetic analysis of CtrA sequences supports the hypothesis of an ancestral ctrA gene within the alphaproteobacteria, with subsequent diversification of function in the major alphaproteobacterial lineages.


Frontiers in Microbiology | 2015

Genetic determinants of heat resistance in Escherichia coli

Ryan G. Mercer; Jinshui Zheng; Rigoberto Garcia-Hernandez; Lifang Ruan; Michael G. Gänzle; Lynn M. McMullen

Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR). This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli.


Fems Microbiology Letters | 2012

Regulatory systems controlling motility and gene transfer agent production and release in Rhodobacter capsulatus.

Ryan G. Mercer; Matthew Quinlan; Alexandra R. Rose; Stephan Noll; J. Thomas Beatty; Andrew S. Lang

Production of the gene transfer agent of Rhodobacter capsulatus, RcGTA, is dependent upon several cellular regulatory systems, including a putative phosphorelay involving the CtrA and CckA proteins. These proteins are also involved in flagellar motility in R. capsulatus. The interactions of proteins in this system are best understood in Caulobacter crescentus where CtrA is activated by phosphorylation by the CckA-ChpT phosphorelay. CtrA~P activity is further controlled by SciP, which represses ctrA transcription and CtrA activation of transcription. We show that R. capsulatus chpT and cckA mutants both have greatly reduced motility and RcGTA activity. Unlike the ctrA mutant where RcGTA gene transcription is absent, the decrease in RcGTA activity is because of reduced release of RcGTA from the cells. The sciP mutant is not affected for RcGTA production but our results support the C. crescentus model of SciP repression of flagellar motility genes. We show that both unphosphorylated and phosphorylated CtrA can activate RcGTA gene expression, while CtrA~P seems to be required for release of the particle and expression of motility genes. This has led us to a new model of how this regulatory system controls motility and production of RcGTA in R. capsulatus.


Molecular Microbiology | 2013

Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA)

Cedric A. Brimacombe; Aaron Stevens; Daniel Jun; Ryan G. Mercer; Andrew S. Lang; J. Thomas Beatty

The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) resembles a small tailed bacteriophage that packages almost random genomic DNA segments that may be transferred to other R. capsulatus cells. Gene transfer agents are produced by a number of prokaryotes; however, no receptors have been identified. We investigated the RcGTA recipient capability of wild‐type R. capsulatus cells at different culture growth phases, and found that the frequency of RcGTA‐dependent acquisition of an allele increases as cultures enter the stationary phase. We also found that RcGTA adsorption to cells follows a similar trend. RcGTA recipient capability and adsorption were found to be dependent on the GtaR/I quorum‐sensing (QS) system. Production of an extracellular polysaccharide was found to be regulated by GtaR/I QS, as was production of the cell capsule. A number of QS‐regulated putative polysaccharide biosynthesis genes were identified, and mutagenesis of two of these genes, rcc01081 and rcc01932, yielded strains that lack a capsule. Furthermore, these mutants were impaired in RcGTA recipient capability and adsorption, as was a non‐encapsulated wild‐type isolate of R. capsulatus. Overall, our results indicate that capsular polysaccharide is a receptor for the gene transfer agent of R. capsulatus, RcGTA.


BMC Microbiology | 2014

Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus

Ryan G. Mercer; Andrew S. Lang

BackgroundProduction of the gene transfer agent RcGTA in the α-proteobacterium Rhodobacter capsulatus is dependent upon the response regulator protein CtrA. Loss of this regulator has widespread effects on transcription in R. capsulatus, including the dysregulation of numerous genes encoding other predicted regulators. This includes a set of putative components of a partner-switching signaling pathway with sequence homology to the σ-regulating proteins RsbV, RsbW, and RsbY that have been extensively characterized for their role in stress responses in gram-positive bacteria. These R. capsulatus homologues, RbaV, RbaW, and RbaY, have been investigated for their possible role in controlling RcGTA gene expression.ResultsA mutant strain lacking rbaW showed a significant increase in RcGTA gene expression and production. Mutation of rbaV or rbaY led to a decrease in RcGTA gene expression and production, and these mutants also showed decreased viability in the stationary phase and produced unusual colony morphologies. In vitro and in vivo protein interaction assays demonstrated that RbaW and RbaV interact. A combination of gene disruptions and protein-protein interaction assays were unsuccessful in attempts to identify a cognate σ factor, and the genetic data support a model where the RbaV protein that is the determinant regulator of RcGTA gene expression in this system.ConclusionsThese findings provide new information about RcGTA regulation by a putative partner-switching system and further illustrate the integration of RcGTA production into R. capsulatus physiology.


Molecular Biology and Evolution | 2016

Functional and Evolutionary Characterization of a Gene Transfer Agent’s Multilocus “Genome”

Alexander P. Hynes; Migun Shakya; Ryan G. Mercer; Marc P. Grüll; Luke Bown; Fraser J. M. Davidson; Ekaterina Steffen; Heidi Matchem; Mandy Peach; Tim Berger; Katherine Grebe; Olga Zhaxybayeva; Andrew S. Lang

Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell’s genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures “repurposed” by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA “genome” consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA “genome” loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA “genome” is presumably a result of selection on the host organism to retain GTA functionality.


Applied and Environmental Microbiology | 2017

Induction of Shiga toxin prophage by abiotic environmental stress in food

Yuan Fang; Ryan G. Mercer; Lynn M. McMullen; Michael G. Gänzle

ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H2O2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage.


Applied and Environmental Microbiology | 2017

Functional analysis of genes encoded by the locus of heat resistance (LHR) in Escherichia coli

Ryan G. Mercer; Oanh Nguyen; Qixing Ou; Lynn M. McMullen; Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1GI, yfdX2, hdeDGI, orf11, trxGI, kefB, and psiEGI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trxGI, kefB, and psiEGI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


Food Microbiology | 2017

The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli and Enterobacter cloacae

Ryan G. Mercer; Brian Walker; Xianqin Yang; Lynn M. McMullen; Michael G. Gänzle

Collaboration


Dive into the Ryan G. Mercer's collaboration.

Top Co-Authors

Avatar

Andrew S. Lang

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Thomas Beatty

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qixing Ou

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

Yuan Fang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

Aaron Stevens

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alexandra R. Rose

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge