Andrew Voorhees
University of Texas at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Voorhees.
Circulation Research | 2013
Yonggang Ma; Ganesh V. Halade; Jianhua Zhang; Trevi A. Ramirez; Daniel L. Levin; Andrew Voorhees; Yu Fang Jin; Hai Chao Han; Anne M. Manicone; Merry L. Lindsey
Rationale: Matrix metalloproteinase (MMP)-28 regulates the inflammatory and extracellular matrix responses in cardiac aging, but the roles of MMP-28 after myocardial infarction (MI) have not been explored. Objective: To determine the impact of MMP-28 deletion on post-MI remodeling of the left ventricle (LV). Methods and Results: Adult C57BL/6J wild-type (n=76) and MMP null (MMP-28−/−, n=86) mice of both sexes were subjected to permanent coronary artery ligation to create MI. MMP-28 expression decreased post-MI, and its cell source shifted from myocytes to macrophages. MMP-28 deletion increased day 7 mortality because of increased cardiac rupture post-MI. MMP-28−/− mice exhibited larger LV volumes, worse LV dysfunction, a worse LV remodeling index, and increased lung edema. Plasma MMP-9 levels were unchanged in the MMP-28−/− mice but increased in wild-type mice at day 7 post-MI. The mRNA levels of inflammatory and extracellular matrix proteins were attenuated in the infarct regions of MMP-28−/− mice, indicating reduced inflammatory and extracellular matrix responses. M2 macrophage activation was impaired when MMP-28 was absent. MMP-28 deletion also led to decreased collagen deposition and fewer myofibroblasts. Collagen cross-linking was impaired as a result of decreased expression and activation of lysyl oxidase in the infarcts of MMP-28−/− mice. The LV tensile strength at day 3 post-MI, however, was similar between the 2 genotypes. Conclusions: MMP-28 deletion aggravated MI-induced LV dysfunction and rupture as a result of defective inflammatory response and scar formation by suppressing M2 macrophage activation.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Andriy Yabluchanskiy; Yonggang Ma; Ying Ann Chiao; Elizabeth F. Lopez; Andrew Voorhees; Hiroe Toba; Michael E. Hall; Hai Chao Han; Merry L. Lindsey; Yu Fang Jin
Aging is linked to increased matrix metalloproteinase-9 (MMP-9) expression and extracellular matrix turnover, as well as a decline in function of the left ventricle (LV). Previously, we demonstrated that C57BL/6J wild-type (WT) mice > 18 mo of age show impaired diastolic function, which was attenuated by MMP-9 deletion. To evaluate mechanisms that initiate the development of cardiac dysfunction, we compared the LVs of 6-9- and 15-18-mo-old WT and MMP-9 null (Null) mice. All groups showed similar LV function by echocardiography, indicating that dysfunction had not yet developed in the older group. Myocyte nuclei numbers and cross-sectional areas increased in both WT and Null 15-18-mo mice compared with young controls, indicating myocyte hypertrophy. Myocyte hypertrophy leads to an increased oxygen demand, and both WT and Null 15-18-mo mice showed an increase in angiogenic signaling. Plasma proteomic profiling and LV analysis revealed a threefold increase in von Willebrand factor and fivefold increase in vascular endothelial growth factor in WT 15-18-mo mice, which were further elevated in Null mice. In contrast to the upregulation of angiogenic stimulating factors, actual LV vessel numbers increased only in the 15-18-mo Null LV. The 15-18-mo WT showed amplified expression of inflammatory genes related to angiogenesis, including C-C chemokine receptor (CCR)7, CCR10, interleukin (IL)-1f8, IL-13, and IL-20 (all, P < 0.05), and these increases were blunted by MMP-9 deletion (all, P < 0.05). To measure vascular permeability as an index of endothelial function, we injected mice with FITC-labeled dextran. The 15-18-mo WT LV showed increased vascular permeability compared with young WT controls and 15-18-mo Null mice. Combined, our findings revealed that MMP-9 deletion improves angiogenesis, attenuates inflammation, and prevents vascular leakiness in the setting of cardiac aging.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Andriy Yabluchanskiy; Yonggang Ma; Kristine Y. DeLeon-Pennell; Raffaele Altara; Ganesh V. Halade; Andrew Voorhees; Nguyen Nguyen; Yu Fang Jin; Michael D. Winniford; Michael E. Hall; Hai Chao Han; Merry L. Lindsey
In this study, we examined the combined effect of aging and myocardial infarction on left ventricular remodeling, focusing on matrix metalloproteinase (MMP)-9-dependent mechanisms. We enrolled 55 C57BL/6J wild type (WT) and 85 MMP-9 Null (Null) mice of both sexes at 11-36 months of age and evaluated their response at Day 7 post-myocardial infarction. Plasma MMP-9 levels positively linked to age in WT mice (r = .46, p = .001). MMP-9 deletion improved survival (76% for WT vs 88% for Null, p = .021). Post-myocardial infarction, there was a progressive increase in left ventricular dilation with age in WT but not in Null mice. By inflammatory gene array analysis, WT mice showed linear age-dependent increases in three different proinflammatory genes (C3, CCl4, and CX3CL1; all p < .05), whereas Null mice showed increases in three proinflammatory genes (CCL5, CCL9, and CXCL4; all p < .05) and seven anti-inflammatory genes (CCL1, CCL6, CCR1, IL11, IL1r2, IL8rb, and Mif; all p < .05). Compared with WT, macrophages isolated from Null left ventricle infarct demonstrated enhanced expression of anti-inflammatory M2 markers CD163, MRC1, TGF-β1, and YM1 (all p < .05), without affecting proinflammatory M1 markers. In conclusion, MMP-9 deletion stimulated anti-inflammatory polarization of macrophages to attenuate left ventricle dysfunction in the aging post-myocardial infarction.
Journal of Molecular and Cellular Cardiology | 2015
Andrew Voorhees; Kristine Y. DeLeon-Pennell; Yonggang Ma; Ganesh V. Halade; Andriy Yabluchanskiy; Rugmani Padmanabhan Iyer; Elizabeth R. Flynn; Courtney Cates; Merry L. Lindsey; Hai Chao Han
Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood. The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n=88) and MMP-9 null (MMP-9(-/-); n=92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n=42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9(-/-) showed only a 2-fold increase (p<0.05). Biaxial mechanical testing revealed that MMP-9(-/-) infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p<0.05). Paradoxically, MMP-9(-/-) infarcts had a 1.8-fold reduction in collagen deposition (p<0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p<0.05) in MMP-9(-/-) infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p<0.05) and reduced fibronectin fragmentation by 49% (p<0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase.
BMC Systems Biology | 2012
Tianyi Yang; Ying Ann Chiao; Yunji Wang; Andrew Voorhees; Hai Chao Han; Merry L. Lindsey; Yu-Fang Jin
Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV), which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM) is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT) C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age.
Theoretical Biology and Medical Modelling | 2014
Andrew Voorhees; Hai Chao Han
BackgroundAdverse remodeling of the left ventricle (LV) following myocardial infarction (MI) leads to heart failure. Recent studies have shown that scar anisotropy is a determinant of cardiac function post-MI, however it remains unclear how changes in extracellular matrix (ECM) organization and structure contribute to changes in LV function. The objective of this study is to develop a model to identify potential mechanisms by which collagen structure and organization affect LV function post-MI.MethodsA four-region, multi-scale, cylindrical model of the post-MI LV was developed. The mechanical properties of the infarct region are governed by a constitutive equation based on the uncrimping of collagen fibers. The parameters of this constitutive equation include collagen orientation, angular dispersion, fiber stiffness, crimp angle, and density. Parametric variation of these parameters was used to elucidate the relationship between collagen properties and LV function.ResultsThe mathematical model of the LV revealed several factors that influenced cardiac function post-MI. LV function was maximized when collagen fibers were aligned longitudinally. Increased collagen density was also found to improve stroke volume for longitudinal alignments while increased fiber stiffness decreased stroke volume for circumferential alignments.ConclusionsThe results suggest that cardiac function post-MI is best preserved through increased circumferential compliance. Further, this study identifies several collagen fiber-level mechanisms that could potentially regulate both infarct level and organ level mechanics. Improved understanding of the multi-scale relationships between the ECM and LV function will be beneficial in the design of new diagnostic and therapeutic technologies.
Circulation Research | 2012
Yonggang Ma; Ganesh V. Halade; Jianhua Zhang; Trevi A. Ramirez; Daniel L. Levin; Andrew Voorhees; Yu-Fang Jin; Hai Chao Han; Anne M. Manicone; Merry L. Lindsey
Rationale: Matrix metalloproteinase (MMP)-28 regulates the inflammatory and extracellular matrix responses in cardiac aging, but the roles of MMP-28 after myocardial infarction (MI) have not been explored. Objective: To determine the impact of MMP-28 deletion on post-MI remodeling of the left ventricle (LV). Methods and Results: Adult C57BL/6J wild-type (n=76) and MMP null (MMP-28−/−, n=86) mice of both sexes were subjected to permanent coronary artery ligation to create MI. MMP-28 expression decreased post-MI, and its cell source shifted from myocytes to macrophages. MMP-28 deletion increased day 7 mortality because of increased cardiac rupture post-MI. MMP-28−/− mice exhibited larger LV volumes, worse LV dysfunction, a worse LV remodeling index, and increased lung edema. Plasma MMP-9 levels were unchanged in the MMP-28−/− mice but increased in wild-type mice at day 7 post-MI. The mRNA levels of inflammatory and extracellular matrix proteins were attenuated in the infarct regions of MMP-28−/− mice, indicating reduced inflammatory and extracellular matrix responses. M2 macrophage activation was impaired when MMP-28 was absent. MMP-28 deletion also led to decreased collagen deposition and fewer myofibroblasts. Collagen cross-linking was impaired as a result of decreased expression and activation of lysyl oxidase in the infarcts of MMP-28−/− mice. The LV tensile strength at day 3 post-MI, however, was similar between the 2 genotypes. Conclusions: MMP-28 deletion aggravated MI-induced LV dysfunction and rupture as a result of defective inflammatory response and scar formation by suppressing M2 macrophage activation.
Comprehensive Physiology | 2015
Andrew Voorhees; Hai Chao Han
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here, we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments.
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference | 2009
Andrew Voorhees; Ronald L. Bagley; H. Millwater
Complex variable, numerical differentiation techniques have proven useful in many fields of engineering analysis. Complex Taylor series expansion and Fourier differentiation are two such complex variable methods. This paper adapts the use of both complex Taylor series expansion and Fourier differentiation for fatigue sensitivity analysis. The sensitivity of the number of cycles to failure to input parameters and initial conditions has been determined by traditional numerical differentiation techniques as well as through complex variable methods. Both complex Taylor series expansion and Fourier differentiation have been found to be more accurate and stable than traditional central differencing.
Circulation Research | 2013
Yonggang Ma; Ganesh V. Halade; Jianhua Zhang; Trevi A. Ramirez; Daniel L. Levin; Andrew Voorhees; Yu-Fang Jin; Hai Chao Han; Anne M. Manicone; Merry L. Lindsey
Rationale: Matrix metalloproteinase (MMP)-28 regulates the inflammatory and extracellular matrix responses in cardiac aging, but the roles of MMP-28 after myocardial infarction (MI) have not been explored. Objective: To determine the impact of MMP-28 deletion on post-MI remodeling of the left ventricle (LV). Methods and Results: Adult C57BL/6J wild-type (n=76) and MMP null (MMP-28−/−, n=86) mice of both sexes were subjected to permanent coronary artery ligation to create MI. MMP-28 expression decreased post-MI, and its cell source shifted from myocytes to macrophages. MMP-28 deletion increased day 7 mortality because of increased cardiac rupture post-MI. MMP-28−/− mice exhibited larger LV volumes, worse LV dysfunction, a worse LV remodeling index, and increased lung edema. Plasma MMP-9 levels were unchanged in the MMP-28−/− mice but increased in wild-type mice at day 7 post-MI. The mRNA levels of inflammatory and extracellular matrix proteins were attenuated in the infarct regions of MMP-28−/− mice, indicating reduced inflammatory and extracellular matrix responses. M2 macrophage activation was impaired when MMP-28 was absent. MMP-28 deletion also led to decreased collagen deposition and fewer myofibroblasts. Collagen cross-linking was impaired as a result of decreased expression and activation of lysyl oxidase in the infarcts of MMP-28−/− mice. The LV tensile strength at day 3 post-MI, however, was similar between the 2 genotypes. Conclusions: MMP-28 deletion aggravated MI-induced LV dysfunction and rupture as a result of defective inflammatory response and scar formation by suppressing M2 macrophage activation.
Collaboration
Dive into the Andrew Voorhees's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs