Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew W. Duncan is active.

Publication


Featured researches published by Andrew W. Duncan.


Nature | 2003

A role for Wnt signalling in self-renewal of haematopoietic stem cells

Tannishtha Reya; Andrew W. Duncan; Laurie Ailles; Jos Domen; David C. Scherer; Karl Willert; Lindsay Hintz; Roel Nusse; Irving L. Weissman

Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated β-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.


Nature | 2003

Wnt proteins are lipid-modified and can act as stem cell growth factors

Karl Willert; Jeffrey Brown; Esther Danenberg; Andrew W. Duncan; Irving L. Weissman; Tannishtha Reya; John R. Yates; Roel Nusse

Wnt signalling is involved in numerous events in animal development, including the proliferation of stem cells and the specification of the neural crest. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells, secretion is usually inefficient and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering.


Nature Immunology | 2005

Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance

Andrew W. Duncan; Frédérique Marie Rattis; Leah N. DiMascio; Kendra L. Congdon; Gregory Pazianos; Chen Zhao; Keejung Yoon; J. Michael Cook; Karl Willert; Nicholas Gaiano; Tannishtha Reya

A fundamental question in hematopoietic stem cell (HSC) biology is how self-renewal is controlled. Here we show that the molecular regulation of two critical elements of self-renewal, inhibition of differentiation and induction of proliferation, can be uncoupled, and we identify Notch signaling as a key factor in inhibiting differentiation. Using transgenic Notch reporter mice, we found that Notch signaling was active in HSCs in vivo and downregulated as HSCs differentiated. Inhibition of Notch signaling led to accelerated differentiation of HSCs in vitro and depletion of HSCs in vivo. Finally, intact Notch signaling was required for Wnt-mediated maintenance of undifferentiated HSCs but not for survival or entry into the cell cycle in vitro. These data suggest that Notch signaling has a dominant function in inhibiting differentiation and provide a model for how HSCs may integrate multiple signals to maintain the stem cell state.


Gastroenterology | 2009

Stem Cells and Liver Regeneration

Andrew W. Duncan; Craig Dorrell; Markus Grompe

One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition.


Nature | 2010

The ploidy-conveyor of mature hepatocytes as a source of genetic variation

Andrew W. Duncan; Matthew H. Taylor; Raymond D. Hickey; Amy Hanlon Newell; Michelle L. Lenzi; Susan B. Olson; Milton J. Finegold; Markus Grompe

Mononucleated and binucleated polyploid hepatocytes (4n, 8n, 16n and higher) are found in all mammalian species, but the functional significance of this conserved phenomenon remains unknown. Polyploidization occurs through failed cytokinesis, begins at weaning in rodents and increases with age. Previously, we demonstrated that the opposite event, ploidy reversal, also occurs in polyploid hepatocytes generated by artificial cell fusion. This raised the possibility that somatic ‘reductive mitoses’ can also happen in normal hepatocytes. Here we show that multipolar mitotic spindles form frequently in mouse polyploid hepatocytes and can result in one-step ploidy reversal to generate offspring with halved chromosome content. Proliferating hepatocytes produce a highly diverse population of daughter cells with multiple numerical chromosome imbalances as well as uniparental origins. Our findings support a dynamic model of hepatocyte polyploidization, ploidy reversal and aneuploidy, a phenomenon that we term the ‘ploidy conveyor’. We propose that this mechanism evolved to generate genetic diversity and permits adaptation of hepatocytes to xenobiotic or nutritional injury.


Genes & Development | 2011

Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice

Craig Dorrell; Laura Erker; Jonathan Schug; Janel L. Kopp; Pamela S. Canaday; Alan J. Fox; Olga Smirnova; Andrew W. Duncan; Milton J. Finegold; Maike Sander; Klaus H. Kaestner; Markus Grompe

The molecular identification of adult hepatic stem/progenitor cells has been hampered by the lack of truly specific markers. To isolate putative adult liver progenitor cells, we used cell surface-marking antibodies, including MIC1-1C3, to isolate subpopulations of liver cells from normal adult mice or those undergoing an oval cell response and tested their capacity to form bilineage colonies in vitro. Robust clonogenic activity was found to be restricted to a subset of biliary duct cells antigenically defined as CD45(-)/CD11b(-)/CD31(-)/MIC1-1C3(+)/CD133(+)/CD26(-), at a frequency of one of 34 or one of 25 in normal or oval cell injury livers, respectively. Gene expression analyses revealed that Sox9 was expressed exclusively in this subpopulation of normal liver cells and was highly enriched relative to other cell fractions in injured livers. In vivo lineage tracing using Sox9creER(T2)-R26R(YFP) mice revealed that the cells that proliferate during progenitor-driven liver regeneration are progeny of Sox9-expressing precursors. A comprehensive array-based comparison of gene expression in progenitor-enriched and progenitor-depleted cells from both normal and DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine or diethyl1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate)-treated livers revealed new potential regulators of liver progenitors.


Journal of Immunology | 2007

Identification of Adiponectin as a Novel Hemopoietic Stem Cell Growth Factor

Leah N. DiMascio; Carlijn Voermans; Mweia Uqoezwa; Andrew W. Duncan; Danhong Lu; Judy Wu; Uma Sankar; Tannishtha Reya

The hemopoietic microenvironment consists of a diverse repertoire of cells capable of providing signals that influence hemopoietic stem cell function. Although the role of osteoblasts and vascular endothelial cells has recently been characterized, the function of the most abundant cell type in the bone marrow, the adipocyte, is less defined. Given the emergence of a growing number of adipokines, it is possible that these factors may also play a role in regulating hematopoiesis. Here, we investigated the role of adiponectin, a secreted molecule derived from adipocytes, in hemopoietic stem cell (HSC) function. We show that adiponectin is expressed by components of the HSC niche and its’ receptors AdipoR1 and AdipoR2 are expressed by HSCs. At a functional level, adiponectin influences HSCs by increasing their proliferation, while retaining the cells in a functionally immature state as determined by in vitro and in vivo assays. We also demonstrate that adiponectin signaling is required for optimal HSC proliferation both in vitro and in long term hemopoietic reconstitution in vivo. Finally we show that adiponectin stimulation activates p38 MAPK, and that inhibition of this pathway abrogates adiponectin’s proliferative effect on HSCs. These studies collectively identify adiponectin as a novel regulator of HSC function and suggest that it acts through a p38 dependent pathway.


The EMBO Journal | 2002

Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line

Youjia Cao; Erin Janssen; Andrew W. Duncan; Amnon Altman; Daniel D. Billadeau; Robert T. Abraham

The Rac/Rho‐specific guanine nucleotide exchange factor, Vav‐1, is a key component of the T‐cell antigen receptor (TCR)‐linked signaling machinery. Here we have used somatic cell gene‐targeting technology to generate a Vav‐1‐deficient Jurkat T‐cell line. The J.Vav1 cell line exhibits dramatic defects in TCR‐dependent interleukin (IL)‐2 promoter activation, accompanied by significant reductions in the activities of the NFAT(IL‐2), NFκB, AP‐1 and REAP transcription factors that bind to the IL‐2 promoter region. In contrast, loss of Vav‐1 had variable effects on early TCR‐stimulated signaling events. J.Vav1 cells display a selective defect in sustained Ca2+ signaling during TCR stimulation, and complementation of this abnormality by exogenously introduced Vav‐1 is dependent on the Vav‐1 calponin homology domain. While JNK activation was severely impaired, the stimulation of Ras, ERK and protein kinase C‐θ activities, as well as the mobilization of lipid rafts, appeared normal in the J.Vav1 cells. Finally, evidence is presented to suggest that the alternative Vav family members, Vav‐2 and Vav‐3, are activated during TCR ligation, and partially compensate for the loss of Vav‐1 in Jurkat T cells.


Gastroenterology | 2012

Frequent aneuploidy among normal human hepatocytes.

Andrew W. Duncan; Amy Hanlon Newell; Leslie Smith; Elizabeth M. Wilson; Susan B. Olson; Matthew Thayer; Stephen C. Strom; Markus Grompe

Murine hepatocytes become polyploid and then undergo ploidy reversal and become aneuploid in a dynamic process called the ploidy conveyor. Although polyploidization occurs in some types of human cells, the degree of aneuploidy in human hepatocytes is not known. We isolated hepatocytes derived from healthy human liver samples and determined chromosome number and identity using traditional karyotyping and fluorescence in situ hybridization. Similar to murine hepatocytes, human hepatocytes are highly aneuploid. Moreover, imaging studies revealed multipolar spindles and chromosome segregation defects in dividing human hepatocytes. Aneuploidy therefore does not necessarily predispose liver cells to transformation but might promote genetic diversity among hepatocytes.


Journal of Clinical Investigation | 2012

Aneuploidy as a mechanism for stress-induced liver adaptation

Andrew W. Duncan; Amy Hanlon Newell; Weimin Bi; Milton J. Finegold; Susan B. Olson; Arthur L. Beaudet; Markus Grompe

Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.

Collaboration


Dive into the Andrew W. Duncan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Lu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Karl Willert

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge