Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Walkty is active.

Publication


Featured researches published by Andrew Walkty.


Drugs | 2002

A Critical Review of the Fluoroquinolones

George G. Zhanel; Kelly Ennis; Lavern M. Vercaigne; Andrew Walkty; Alfred S. Gin; John M. Embil; Heather Smith; Daryl J. Hoban

The new fluoroquinolones (clinafloxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, moxifloxacin, sitafloxacin, sparfloxacin and trovafloxacin) offer excellent activity against Gram-negative bacilli and improved Gram-positive activity (e.g. against Streptococcus pneumoniae and Staphylococcus aureus) over ciprofloxacin. Ciprofloxacin still maintains the best in vitro activity against Pseudomonas aeruginosa. Clinafloxacin, gatifloxacin, moxifloxacin, sitafloxacin, sparfloxacin and trovafloxacin display improved activity against anaerobes (e.g. Bacteroides fragilis) versus ciprofloxacin. All of the new fluoroquinolones display excellent bioavailability and have longer serum half-lives than ciprofloxacin allowing for once daily dose administration.Clinical trials comparing the new fluoroquinolones to each other or to standard therapy have demonstrated good efficacy in a variety of community-acquired respiratory infections (e.g. pneumonia, acute exacerbations of chronic bronchitis and acute sinusitis). Limited data suggest that the new fluoroquinolones as a class may lead to better outcomes in community-acquired pneumonia and acute exacerbations of chronic bronchitis versus comparators. Several of these agents have either been withdrawn from the market, had their use severely restricted because of adverse effects (clinafloxacin because of phototoxicity and hypoglycaemia; grepafloxacin because of prolongation of the QTc and resultant torsades de pointes; sparfloxacin because of phototoxicity; and trovafloxacin because of hepatotoxicity), or were discontinued during developmental phases. The remaining fluoroquinolones such as gatifloxacin, gemifloxacin, levofloxacin and moxifloxacin have adverse effect profiles similar to ciprofloxacin. Extensive post-marketing safety surveillance data (as are available with ciprofloxacin and levofloxacin) are required for all new fluoroquinolones before safety can be definitively established. Drug interactions are limited; however, all fluoroquinolones interact with metal ion containing drugs (eg. antacids).The new fluoroquinolones (gatifloxacin, gemifloxacin, levofloxacin and moxifloxacin) offer several advantages over ciprofloxacin and are emerging as important therapeutic agents in the treatment of community-acquired respiratory infections. Their broad spectrum of activity which includes respiratory pathogens such as penicillin and macrolide resistant S. pneumoniae, favourable pharmacokinetic parameters, good bacteriological and clinical efficacy will lead to growing use of these agents in the treatment of community-acquired pneumonia, acute exacerbations of chronic bronchitis and acute sinusitis. These agents may result in cost savings especially in situations where, because of their potent broad-spectrum activity and excellent bioavailability, they may be used orally in place of intravenous antibacterials. Prudent use of the new fluoroquinolones will be required to minimise the development of resistance to these agents.


Antimicrobial Agents and Chemotherapy | 2008

Antimicrobial-Resistant Pathogens in Intensive Care Units in Canada: Results of the Canadian National Intensive Care Unit (CAN-ICU) Study, 2005-2006

George G. Zhanel; Mel DeCorby; Nancy M. Laing; Barb Weshnoweski; Ravi Vashisht; Franil Tailor; Kim Nichol; Aleksandra Wierzbowski; Patricia J. Baudry; James A. Karlowsky; Philippe Lagacé-Wiens; Andrew Walkty; Melissa McCracken; Michael R. Mulvey; John L. Johnson; Daryl J. Hoban

ABSTRACT Between 1 September 2005 and 30 June 2006, 19 medical centers collected 4,180 isolates recovered from clinical specimens from patients in intensive care units (ICUs) in Canada. The 4,180 isolates were collected from 2,292 respiratory specimens (54.8%), 738 blood specimens (17.7%), 581 wound/tissue specimens (13.9%), and 569 urinary specimens (13.6%). The 10 most common organisms isolated from 79.5% of all clinical specimens were methicillin-susceptible Staphylococcus aureus (MSSA) (16.4%), Escherichia coli (12.8%), Pseudomonas aeruginosa (10.0%), Haemophilus influenzae (7.9%), coagulase-negative staphylococci/Staphylococcus epidermidis (6.5%), Enterococcus spp. (6.1%), Streptococcus pneumoniae (5.8%), Klebsiella pneumoniae (5.8%), methicillin-resistant Staphylococcus aureus (MRSA) (4.7%), and Enterobacter cloacae (3.9%). MRSA made up 22.3% (197/884) of all S. aureus isolates (90.9% of MRSA were health care-associated MRSA, and 9.1% were community-associated MRSA), while vancomycin-resistant enterococci (VRE) made up 6.7% (11/255) of all enterococcal isolates (88.2% of VRE had the vanA genotype). Extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae occurred in 3.5% (19/536) and 1.8% (4/224) of isolates, respectively. All 19 ESBL-producing E. coli isolates were PCR positive for CTX-M, with blaCTX-M-15 occurring in 74% (14/19) of isolates. For MRSA, no resistance against daptomycin, linezolid, tigecycline, and vancomycin was observed, while the resistance rates to other agents were as follows: clarithromycin, 89.9%; clindamycin, 76.1%; fluoroquinolones, 90.1 to 91.8%; and trimethoprim-sulfamethoxazole, 11.7%. For E. coli, no resistance to amikacin, meropenem, and tigecycline was observed, while resistance rates to other agents were as follows: cefazolin, 20.1%; cefepime, 0.7%; ceftriaxone, 3.7%; gentamicin, 3.0%; fluoroquinolones, 21.1%; piperacillin-tazobactam, 1.9%; and trimethoprim-sulfamethoxazole, 24.8%. Resistance rates for P. aeruginosa were as follows: amikacin, 2.6%; cefepime, 10.2%; gentamicin, 15.2%; fluoroquinolones, 23.8 to 25.5%; meropenem, 13.6%; and piperacillin-tazobactam, 9.3%. A multidrug-resistant (MDR) phenotype (resistance to three or more of the following drugs: cefepime, piperacillin-tazobactam, meropenem, amikacin or gentamicin, and ciprofloxacin) occurred frequently in P. aeruginosa (12.6%) but uncommonly in E. coli (0.2%), E. cloacae (0.6%), or K. pneumoniae (0%). In conclusion, S. aureus (MSSA and MRSA), E. coli, P. aeruginosa, H. influenzae, Enterococcus spp., S. pneumoniae, and K. pneumoniae are the most common isolates recovered from clinical specimens in Canadian ICUs. A MDR phenotype is common for P. aeruginosa isolates in Canadian ICUs.


Antimicrobial Agents and Chemotherapy | 2010

Prevalence of Antimicrobial-Resistant Pathogens in Canadian Hospitals: Results of the Canadian Ward Surveillance Study (CANWARD 2008)

George G. Zhanel; Melanie DeCorby; Heather J. Adam; Michael R. Mulvey; Melissa McCracken; Philippe Lagacé-Wiens; Kimberly A. Nichol; Aleksandra Wierzbowski; Patricia J. Baudry; Franil Tailor; James A. Karlowsky; Andrew Walkty; Frank Schweizer; John L. Johnson; Daryl J. Hoban

ABSTRACT A total of 5,282 bacterial isolates obtained between 1 January and 31 December 31 2008, inclusive, from patients in 10 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2008) underwent susceptibility testing. The 10 most common organisms, representing 78.8% of all clinical specimens, were as follows: Escherichia coli (21.4%), methicillin-susceptible Staphylococcus aureus (MSSA; 13.9%), Streptococcus pneumoniae (10.3%), Pseudomonas aeruginosa (7.1%), Klebsiella pneumoniae (6.0%), coagulase-negative staphylococci/Staphylococcus epidermidis (5.4%), methicillin-resistant S. aureus (MRSA; 5.1%), Haemophilus influenzae (4.1%), Enterococcus spp. (3.3%), Enterobacter cloacae (2.2%). MRSA comprised 27.0% (272/1,007) of all S. aureus isolates (genotypically, 68.8% of MRSA were health care associated [HA-MRSA] and 27.6% were community associated [CA-MRSA]). Extended-spectrum β-lactamase (ESBL)-producing E. coli occurred in 4.9% of E. coli isolates. The CTX-M type was the predominant ESBL, with CTX-M-15 the most prevalent genotype. MRSA demonstrated no resistance to ceftobiprole, daptomycin, linezolid, telavancin, tigecycline, or vancomycin (0.4% intermediate intermediate resistance). E. coli demonstrated no resistance to ertapenem, meropenem, or tigecycline. Resistance rates with P. aeruginosa were as follows: colistin (polymyxin E), 0.8%; amikacin, 3.5%; cefepime, 7.2%; gentamicin, 12.3%; fluoroquinolones, 19.0 to 24.1%; meropenem, 5.6%; piperacillin-tazobactam, 8.0%. A multidrug-resistant (MDR) phenotype occurred frequently in P. aeruginosa (5.9%) but uncommonly in E. coli (1.2%) and K. pneumoniae (0.9%). In conclusion, E. coli, S. aureus (MSSA and MRSA), P. aeruginosa, S. pneumoniae, K. pneumoniae, H. influenzae, and Enterococcus spp. are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 27.0% (of which genotypically 27.6% were CA-MRSA), while ESBL-producing E. coli occurred in 4.9% of isolates. An MDR phenotype was common in P. aeruginosa.


Expert Review of Anti-infective Therapy | 2012

Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin

George G. Zhanel; Christopher Lawson; Sheryl Zelenitsky; Brandon Findlay; Frank Schweizer; Heather J. Adam; Andrew Walkty; Ethan Rubinstein; Alfred S. Gin; Daryl J. Hoban; Joseph P. Lynch; James A. Karlowsky

Plazomicin (formerly ACHN-490) is a next-generation aminoglycoside that was synthetically derived from sisomicin by appending a hydroxy-aminobutyric acid substituent at position 1 and a hydroxyethyl substituent at position 6′. Plazomicin inhibits bacterial protein synthesis and exhibits dose-dependent bactericidal activity. Plazomicin demonstrates activity against both Gram-negative and Gram-positive bacterial pathogens, including isolates harboring any of the clinically relevant aminoglycoside-modifying enzymes. However, like older parenteral aminoglycosides, plazomicin is not active against bacterial isolates expressing ribosomal methyltransferases conferring aminoglycoside resistance. Plazomicin has been reported to demonstrate in vitro synergistic activity when combined with daptomycin or ceftobiprole versus methicillin-resistant Staphylococcus aureus, heteroresistant vancomycin-intermediate S. aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant S. aureus and against Pseudomonas aeruginosa when combined with cefepime, doripenem, imipenem or piperacillin-tazobactam. After intravenous administration of plazomicin to humans at a dose of 15 mg/ kg, the maximum concentraration was 113 μg/ml, the area under the curve0–24 was 239 h·μg/ml, the half-life was 4.0 h and the steady-state volume of distribution was 0.24 L/kg. Results from a Phase II randomized, double-blind study in patients with complicated urinary tract infection and acute pyelonephritis including cases with concurrent bacteremia comparing plazomicin 15 mg/kg intravenously once daily for 5 days with levofloxacin 750 mg intravenously. for 5 days are anticipated in 2012. Human studies to date have not reported nephrotoxicity or ototoxicity, and lack of ototoxicity has been reported in the guinea pig model. Given reported increases in bacterial resistance to current antimicrobial agents and the lack of availability of new agents with novel mechanisms, plazomicin may become a welcomed addition to the antibacterial armamentarium pending positive results from large-scale clinical trials and other required clinical studies.


Core Evidence | 2014

Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections.

Philippe Lagacé-Wiens; Andrew Walkty; James A. Karlowsky

Avibactam (NXL104, AVE1330A) is a semi-synthetic, non-β-lactam, β-lactamase inhibitor that is active against Ambler class A, class C, and some class D serine β-lactamases. In this review, we summarize the in vitro data, pharmacology, mechanisms of action and resistance, and clinical trial data relating to the use of this agent combined with ceftazidime for the treatment of Gram-negative bacterial infections. The addition of avibactam to ceftazidime improves its in vitro activity against Enterobacteriaceae and Pseudomonas aeruginosa. Avibactam does not improve the activity of ceftazidime against Acinetobacter spp., Burkholderia spp., or most anaerobic Gram-negative rods. Pharmacodynamic data indicate that ceftazidime—avibactam is bactericidal at concentrations achievable in human serum. Animal studies demonstrate that ceftazidime–avibactam is effective in ceftazidime-resistant Gram-negative septicemia, meningitis, pyelonephritis, and pneumonia. Limited clinical trials published to date have reported that ceftazidime–avibactam is as effective as therapy with a carbapenem in complicated urinary tract infection and complicated intra-abdominal infection (combined with metronidazole) including infection caused by cephalosporin-resistant Gram-negative isolates. Safety and tolerability of ceftazidime–avibactam in clinical trials has been excellent, with few serious drug-related adverse events reported. Given the abundant clinical experience with ceftazidime and the significant improvement that avibactam provides in its activity against contemporary β-lactamase-producing Gram-negative pathogens, it is likely this new combination agent will play a role in the empiric treatment of complicated urinary tract infections (monotherapy) and complicated intra-abdominal infections (in combination with metronidazole) caused or suspected to be caused by antimicrobial-resistant pathogens (eg, extended spectrum beta-lactamase-, AmpC-, or Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae and multidrug-resistant P. aeruginosa). Potential future uses also include hospital-acquired pneumonia (in combination with antistaphylococcal and antipneumococcal agents) or treatment of skin and soft tissue infections caused by antimicrobial-resistant Gram-negative pathogens (eg, diabetic foot infections), but further clinical trials are required.


Antimicrobial Agents and Chemotherapy | 2011

Activity of NXL104 in Combination with β-Lactams against Genetically Characterized Escherichia coli and Klebsiella pneumoniae Isolates Producing Class A Extended-Spectrum β-Lactamases and Class C β-Lactamases

Philippe Lagacé-Wiens; Franil Tailor; Patricia J. Simner; Melanie DeCorby; James A. Karlowsky; Andrew Walkty; Daryl J. Hoban; George G. Zhanel

ABSTRACT The novel non-β-lactam β-lactamase inhibitor NXL104, in combination with cefepime, ceftazidime, ceftriaxone, amdinocillin, and meropenem, was tested against 190 extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolates, 94 AmpC-hyperproducing E. coli isolates, and 8 AmpC/ESBL-coexpressing E. coli isolates. NXL104 restored 100% susceptibility to the partner cephalosporins for all isolates tested. Amdinocillin and meropenem MICs were modestly improved (2 to 32 times lower) by NXL104. These results suggest that NXL104 may be useful in combination with β-lactams for the treatment of infections caused by ESBL- and AmpC-producing Enterobacteriaceae.


Antimicrobial Agents and Chemotherapy | 2011

Antimicrobial Resistance in Urinary Tract Pathogens in Canada from 2007 to 2009: CANWARD Surveillance Study

James A. Karlowsky; Philippe Lagacé-Wiens; Patricia J. Simner; Melanie DeCorby; Heather J. Adam; Andrew Walkty; Daryl J. Hoban; George G. Zhanel

ABSTRACT From January 2007 to December 2009, an annual Canadian national surveillance study (CANWARD) tested 2,943 urinary culture pathogens for antimicrobial susceptibilities according to Clinical and Laboratory Standards Institute guidelines. The most frequently isolated urinary pathogens were as follows (number of isolates, percentage of all isolates): Escherichia coli (1,581, 54%), enterococci (410, 14%), Klebsiella pneumoniae (274, 9%), Proteus mirabilis (122, 4%), Pseudomonas aeruginosa (100, 3%), and Staphylococcus aureus (80, 3%). The rates of susceptibility to trimethoprim-sulfamethoxazole (SXT) were 78, 86, 84, and 93%, respectively, for E. coli, K. pneumoniae, P. mirabilis, and S. aureus. The rates of susceptibility to nitrofurantoin were 96, 97, 33, and 100%, respectively, for E. coli, enterococci, K. pneumoniae, and S. aureus. The rates of susceptibility to ciprofloxacin were 81, 40, 86, 81, 66, and 41%, respectively, for E. coli, enterococci, K. pneumoniae, P. mirabilis, P. aeruginosa, and S. aureus. Statistical analysis of resistance rates (resistant plus intermediate isolates) by year for E. coli over the 3-year study period demonstrated that increased resistance rates occurred only for amoxicillin-clavulanate (from 1.8 to 6.6%; P < 0.001) and for SXT (from 18.6 to 24.3%; P = 0.02). For isolates of E. coli, in a multivariate logistic regression model, hospital location was independently associated with resistance to ciprofloxacin (P = 0.026) with higher rates of resistance observed in inpatient areas (medical, surgical, and intensive care unit wards). Increased age was also associated with resistance to ciprofloxacin (P < 0.001) and with resistance to two or more commonly prescribed oral agents (amoxicillin-clavulanate, ciprofloxacin, nitrofurantoin, and SXT) (P = 0.005). We conclude that frequently prescribed empirical agents for urinary tract infections, such as SXT and ciprofloxacin, demonstrate lowered in vitro susceptibilities when tested against recent clinical isolates.


Canadian Journal of Infectious Diseases & Medical Microbiology | 1999

The New Fluoroquinolones: A Critical Review

George G. Zhanel; Andrew Walkty; Lavern M. Vercaigne; James A. Karlowsky; John M. Embil; Alfred S. Gin; Daryl J. Hoban

OBJECTIVE This paper reviews the literature available on the new fluoroquinolones - clinafloxacin, gatifloxacin, grepafloxacin, levofloxacin, moxifloxacin, sparfloxacin and trovafloxacin - to compare these agents with each other and contrast them with ciprofloxacin, an older fluoroquinolone. DATA SELECTION Published papers used were obtained by searching MEDLINE for articles published between 1994 and 1998, inclusive. References of published papers were also obtained and reviewed. Abstracts from scientific proceedings were reviewed. DATA EXTRACTION Due to the limited data available on several of the agents, criteria for study inclusion in the in vitro, pharmacokinetics and in vivo sections were not restrictive. DATA SYNTHESIS The new fluoroquinolones offer excellent Gram-negative bacillary activity and improved Gram-positive activity (eg, against Streptococcus pneumoniae and Staphylococcus aureus) over ciprofloxacin. Clinafloxacin, gatifloxacin, moxifloxacin, sparfloxacin and trovafloxacin display improved activity against anaerobes (eg, Bacteriodes fragilis). All of the new fluoroquinolones have a longer serum half-life than ciprofloxacin (allowing for once daily dosing), and several are eliminated predominantly by nonrenal means. No clinical trials are available comparing the new fluoroquinolones with each other. Clinical trials comparing the new fluoroquinolones with standard therapy have demonstrated good efficacy in a variety of infections. Their adverse effect profile is similar to that of ciprofloxacin. Clinafloxacin and sparfloxacin cause a high incidence of phototoxicity (1.5% to 14% and 2% to 11.7%, respectively), grepafloxacin causes a high incidence of taste perversion (9% to 17%) and trovafloxacin causes a high incidence of dizziness (11%). They all interact with metal ion-containing drugs (eg, antacids), and clinafloxacin and grepafloxacin interact with theophylline. The new fluoroquinolones are expensive; however, their use may result in savings in situations where, because of their potent and broad spectrum of activity, they can be used orally in place of intravenous antibiotics. CONCLUSIONS The new fluoroquinolones offer advantages over ciprofloxacin in terms of improved in vitro activity and pharmacokinetics. Whether these advantages translate into improved clinical outcomes is presently unknown. The new fluoroquinolones have the potential to emerge as important therapeutic agents in the treatment of respiratory tract and genitourinary tract infections.


Expert Review of Anti-infective Therapy | 2007

Piperacillin-tazobactam: a β-lactam/β-lactamase inhibitor combination

Alfred S. Gin; Leanne Dilay; James A. Karlowsky; Andrew Walkty; Ethan Rubinstein; George G. Zhanel

Piperacillin–tazobactam is a β-lactam/β-lactamase inhibitor combination with a broad spectrum of antibacterial activity that includes Gram-positive and -negative aerobic and anaerobic bacteria. Piperacillin–tazobactam retains its in vitro activity against broad-spectrum β-lactamase-producing and some extended-spectrum β-lactamase-producing Enterobacteriaceae, but not against isolates of Gram-negative bacilli harboring AmpC β-lactamases. Piperacillin–tazobactam has recently been reformulated to include ethylenediaminetetraacetic acid and sodium citrate; this new formulation has been shown to be compatible in vitro with the two aminoglycosides, gentamicin and amikacin, allowing for simultaneous Y-site infusion, but not with tobramycin. Multicenter, randomized, double-blinded clinical trials have demonstrated piperacillin–tazobactam to be as clinically effective as relevant comparator antibiotics. Clinical trials have demonstrated piperacillin–tazobactam to be effective for the treatment of patients with intra-abdominal infections, skin and soft tissue infections, lower respiratory tract infections, complicated urinary tract infections, gynecological infections and more recently, febrile neutropenia. Piperacillin–tazobactam has an excellent safety and tolerability profile and continues to be a reliable option for the empiric treatment of moderate-to-severe infections in hospitalized patients.


Journal of Antimicrobial Chemotherapy | 2013

Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007–11 study

George G. Zhanel; Heather J. Adam; Melanie R. Baxter; Jeffrey D. Fuller; Kimberly A. Nichol; Andrew Denisuik; Philippe Lagacé-Wiens; Andrew Walkty; James A. Karlowsky; Frank Schweizer; Daryl J. Hoban

OBJECTIVES The purpose of the CANWARD study was to assess the antimicrobial activity of a variety of available agents against 22,746 pathogens isolated from patients in Canadian hospitals between 2007 and 2011. METHODS Between 2007 and 2011, 27,123 pathogens were collected from tertiary-care centres from across Canada; 22,746 underwent antimicrobial susceptibility testing using CLSI broth microdilution methods. Patient demographic data were also collected. RESULTS Of the isolates collected, 45.2%, 29.6%, 14.8% and 10.4% were from blood, respiratory, urine and wound specimens, respectively. Patient demographics were as follows: 54.4%/45.6% male/female, 12.8% ≤ 17 years old, 45.1% 18-64 years old and 42.1% ≥65 years old. Isolates were obtained from patients in medical and surgical wards (37.8%), emergency rooms (25.7%), clinics (18.0%) and intensive care units (18.5%). The three most common pathogens were Escherichia coli (20.1%), Staphylococcus aureus [methicillin-susceptible S. aureus and methicillin-resistant S. aureus (MRSA)] (20.0%) and Pseudomonas aeruginosa (8.0%), which together accounted for nearly half of the isolates obtained. Susceptibility rates (SRs) for E. coli were 100% meropenem, 99.9% tigecycline, 99.7% ertapenem, 97.7% piperacillin/tazobactam, 93.7% ceftriaxone, 90.5% gentamicin, 77.9% ciprofloxacin and 73.4% trimethoprim/sulfamethoxazole. Twenty-three percent of the S. aureus were MRSA. SRs for MRSA were 100% daptomycin, 100% linezolid, 100% telavancin, 99.9% vancomycin, 99.8% tigecycline, 92.2% trimethoprim/sulfamethoxazole and 48.2% clindamycin. SRs for P. aeruginosa were 90.1% amikacin, 93.1% colistin, 84.0% piperacillin/tazobactam, 83.5% ceftazidime, 82.6% meropenem, 72.0% gentamicin and 71.9% ciprofloxacin. CONCLUSIONS The CANWARD surveillance study has provided important data on the antimicrobial susceptibility of pathogens commonly causing infections in Canadian hospitals.

Collaboration


Dive into the Andrew Walkty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Mulvey

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Nichol

University of Manitoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge