Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Schweizer is active.

Publication


Featured researches published by Frank Schweizer.


European Journal of Pharmacology | 2009

Cationic amphiphilic peptides with cancer-selective toxicity

Frank Schweizer

During the last two decades cationic amphiphilic peptides and peptide sequences (CAPs) with cancer-selective toxicity have appeared. Based on their spectrum of anticancer activity CAPs can be divided into two major classes. The first class includes peptides that are highly potent against both bacteria and cancer cells, but not against mammalian cells. The second class includes peptides that are toxic to bacteria, and both mammalian cancer and non-cancer cells. Most antimicrobial and anticancer CAPs share a common membranolytic mode of action that results either in the selective disruption of the cancer cell membrane or permeation and swelling of mitochondria. The electrostatic attraction between the negatively charged membrane components of bacterial and cancer cells and CAPs is believed to play a crucial role in the disruption of bacterial and cancer cell membranes. This mode of action appears to bypass established resistance mechanisms. However, it is currently unclear as to why some CAPs kill cancer cells when others do not. In addition, non-membranolytic mode of actions of CAPs is increasingly recognized to contribute significantly to the anticancer activity of certain CAPs. The development of CAP-based chemotherapeutics is complicated due to the traditionally poor pharmacokinetic properties and high manufacturing costs of peptides and the low intrinsic selectivity for cancer cells. Peptidomimetic approaches combined with novel selective delivery devices show promise in overcoming some of these obstacles. Furthermore, the ability of CAPs to bypass established resistance mechanisms provides an attractive strategy to develop novel lead structures for cancer treatment.


Angewandte Chemie | 2002

Glycosamino Acids: Building Blocks for Combinatorial Synthesis—Implications for Drug Discovery

Frank Schweizer

The unique functions of carbohydrates, including energy storage, transport, modulation of protein function, intercellular adhesion, signal transduction, malignant transformation, and viral and bacterial cell-surface recognition, underlie a significant pharmaceutical potential. The development of combinatorial carbohydrate libraries in this important arena has been slow, in contrast to the rapid development of combinatorial synthesis in the area of small-molecule libraries and biopolymers. This is largely as a result of the inherent difficulties presented by this class of polyfunctional compounds. Nevertheless, strategies to cope with these problems have been devised over the past seven years, and combinatorial carbohydrate libraries have appeared. The incorporation of an amino acid moiety into the carbohydrate scaffold generates glycosamino acids, which are attractive building blocks for the preparation of carbohydrate-based libraries because of the well-established automated peptide synthesis. Derivatization as well as homo- and heterooligomerization of glycosamino acids can be used to create novel structures with unique properties. Glycosamino acids are hybrid structures of carbohydrates and amino acids which can be utilized to generate potential glycomimetics and peptidomimetics. The incorporation of glycosamino acids into peptides allows the engineering of carbohydrate-binding sites into synthetic polypeptides, which may also influence the pharmacokinetic and dynamic properties of the peptides. Furthermore, sugar-amino acid hybrids offer a tremendous structural and functional diversity, which is largely unexplored and requires combinatorial strategies for efficient exploitation. This article provides an overview of previous work on glycosamino acids and discusses their use in combinatorial synthesis and drug discovery. Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.


Drugs | 2010

New Lipoglycopeptides: A Comparative Review of Dalbavancin, Oritavancin and Telavancin

George G. Zhanel; Divna Calic; Frank Schweizer; Sheryl Zelenitsky; Heather J. Adam; Philippe Lagacé-Wiens; Ethan Rubinstein; Alfred S. Gin; Daryl J. Hoban; James A. Karlowsky

Dalbavancin, oritavancin and telavancin are semisynthetic lipoglycopeptides that demonstrate promise for the treatment of patients with infections caused by multi-drug-resistant Gram-positive pathogens. Each of these agents contains a heptapeptide core, common to all glycopeptides, which enables them to inhibit transglycosylation and transpeptidation (cell wall synthesis). Modifications to the heptapeptide core result in different in vitro activities for the three semisynthetic lipoglycopeptides. All three lipoglycopeptides contain lipophilic side chains, which prolong their half-life, help to anchor the agents to the cell membrane and increase their activity against Gram-positive cocci. In addition to inhibiting cell wall synthesis, telavancin and oritavancin are also able to disrupt bacterial membrane integrity and increase membrane permeability; oritavancin also inhibits RNA synthesis. Enterococci exhibiting the VanA phenotype (resistance to both vancomycin and teicoplanin) are resistant to both dalbavancin and telavancin, while oritavancin retains activity. Dalbavancin, oritavancin and telavancin exhibit activity against VanB vancomycin-resistant enterococci. All three lipoglycopeptides demonstrate potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis regardless of their susceptibility to meticillin, as well as Streptococcus spp. Both dalbavancin and telavancin are active against vancomycin-intermediate S. aureus (VISA), but display poor activity versus vancomycin-resistant S. aureus (VRSA). Oritavancin is active against both VISA and VRSA. Telavancin displays greater activity against Clostridium spp. than dalbavancin, oritavancin or vancomycin.The half-life of dalbavancin ranges from 147 to 258 hours, which allows for once-weekly dosing, the half-life of oritavancin of 393 hours may allow for one dose per treatment course, while telavancin requires daily administration. Dalbavancin and telavancin exhibit concentration-dependent activity and AUC/MIC (area under the concentration-time curve to minimum inhibitory concentration ratio) is the pharmacodynamic parameter that best describes their activities. Oritavancin’s activity is also considered concentration-dependent in vitro, while in vivo its activity has been described by both concentration and time-dependent models; however, AUC/MIC is the pharmacodynamic parameter that best describes its activity.Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators. The most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation, while injection site reactions, fever and diarrhoea were commonly observed with oritavancin therapy. Patients administered telavancin frequently reported nausea, taste disturbance and insomnia. To date, no drug-drug interactions have been identified for dalbavancin, oritavancin or telavancin. All three of these agents are promising alternatives for the treatment of cSSSIs in cases where more economical options such as vancomycin have been ineffective, in cases of reduced vancomycin susceptibility or resistance, or where vancomycin use has been associated with adverse events.


Antimicrobial Agents and Chemotherapy | 2010

Cationic Amphiphiles, a New Generation of Antimicrobials Inspired by the Natural Antimicrobial Peptide Scaffold

Brandon Findlay; George G. Zhanel; Frank Schweizer

ABSTRACT Naturally occurring cationic antimicrobial peptides (AMPs) and their mimics form a diverse class of antibacterial agents currently validated in preclinical and clinical settings for the treatment of infections caused by antimicrobial-resistant bacteria. Numerous studies with linear, cyclic, and diastereomeric AMPs have strongly supported the hypothesis that their physicochemical properties, rather than any specific amino acid sequence, are responsible for their microbiological activities. It is generally believed that the amphiphilic topology is essential for insertion into and disruption of the cytoplasmic membrane. In particular, the ability to rapidly kill bacteria and the relative difficulty with which bacteria develop resistance make AMPs and their mimics attractive targets for drug development. However, the therapeutic use of naturally occurring AMPs is hampered by the high manufacturing costs, poor pharmacokinetic properties, and low bacteriological efficacy in animal models. In order to overcome these problems, a variety of novel and structurally diverse cationic amphiphiles that mimic the amphiphilic topology of AMPs have recently appeared. Many of these compounds exhibit superior pharmacokinetic properties and reduced in vitro toxicity while retaining potent antibacterial activity against resistant and nonresistant bacteria. In summary, cationic amphiphiles promise to provide a new and rich source of diverse antibacterial lead structures in the years to come.


Journal of Cellular and Molecular Medicine | 2013

Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development

Mayur V. Jain; Anna Paczulla; Thomas Klonisch; Florence N. Dimgba; Sahana B. Rao; Karin Roberg; Frank Schweizer; Claudia Lengerke; Padideh Davoodpour; Vivek Reddy Palicharla; Subbareddy Maddika; Marek J. Łos

The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer‐ and anti‐ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia‐induced damage. However, initial clinical studies on apoptosis‐modulating drugs led to unexpected results in different clinical conditions and this may have been due to co‐effects on non‐apoptotic interconnected cell death mechanisms and the ‘yin‐yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2‐family members and p53). We also briefly highlight stress‐induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation‐induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.


Antimicrobial Agents and Chemotherapy | 2010

Prevalence of Antimicrobial-Resistant Pathogens in Canadian Hospitals: Results of the Canadian Ward Surveillance Study (CANWARD 2008)

George G. Zhanel; Melanie DeCorby; Heather J. Adam; Michael R. Mulvey; Melissa McCracken; Philippe Lagacé-Wiens; Kimberly A. Nichol; Aleksandra Wierzbowski; Patricia J. Baudry; Franil Tailor; James A. Karlowsky; Andrew Walkty; Frank Schweizer; John L. Johnson; Daryl J. Hoban

ABSTRACT A total of 5,282 bacterial isolates obtained between 1 January and 31 December 31 2008, inclusive, from patients in 10 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2008) underwent susceptibility testing. The 10 most common organisms, representing 78.8% of all clinical specimens, were as follows: Escherichia coli (21.4%), methicillin-susceptible Staphylococcus aureus (MSSA; 13.9%), Streptococcus pneumoniae (10.3%), Pseudomonas aeruginosa (7.1%), Klebsiella pneumoniae (6.0%), coagulase-negative staphylococci/Staphylococcus epidermidis (5.4%), methicillin-resistant S. aureus (MRSA; 5.1%), Haemophilus influenzae (4.1%), Enterococcus spp. (3.3%), Enterobacter cloacae (2.2%). MRSA comprised 27.0% (272/1,007) of all S. aureus isolates (genotypically, 68.8% of MRSA were health care associated [HA-MRSA] and 27.6% were community associated [CA-MRSA]). Extended-spectrum β-lactamase (ESBL)-producing E. coli occurred in 4.9% of E. coli isolates. The CTX-M type was the predominant ESBL, with CTX-M-15 the most prevalent genotype. MRSA demonstrated no resistance to ceftobiprole, daptomycin, linezolid, telavancin, tigecycline, or vancomycin (0.4% intermediate intermediate resistance). E. coli demonstrated no resistance to ertapenem, meropenem, or tigecycline. Resistance rates with P. aeruginosa were as follows: colistin (polymyxin E), 0.8%; amikacin, 3.5%; cefepime, 7.2%; gentamicin, 12.3%; fluoroquinolones, 19.0 to 24.1%; meropenem, 5.6%; piperacillin-tazobactam, 8.0%. A multidrug-resistant (MDR) phenotype occurred frequently in P. aeruginosa (5.9%) but uncommonly in E. coli (1.2%) and K. pneumoniae (0.9%). In conclusion, E. coli, S. aureus (MSSA and MRSA), P. aeruginosa, S. pneumoniae, K. pneumoniae, H. influenzae, and Enterococcus spp. are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 27.0% (of which genotypically 27.6% were CA-MRSA), while ESBL-producing E. coli occurred in 4.9% of isolates. An MDR phenotype was common in P. aeruginosa.


Drugs | 2009

Ceftaroline: A Novel Broad-spectrum Cephalosporin with Activity against Meticillin-resistant Staphylococcus aureus

George G. Zhanel; Grace Sniezek; Frank Schweizer; Sheryl Zelenitsky; Philippe Lagacé-Wiens; Ethan Rubinstein; Alfred S. Gin; Daryl J. Hoban; James A. Karlowsky

Ceftaroline is a broad-spectrum cephalosporin currently under clinical investigation for the treatment of complicated skin and skin-structure infections (cSSSI), including those caused by meticillin-resistant Staphylococcus aureus (MRSA), and community-acquired pneumonia (CAP). Ceftaroline has the ability to bind to penicillin-binding protein (PBP)2a, an MRSA-specific PBP that has low affinity for most other beta-lactam antibacterials. The high binding affinity of ceftaroline to PBP2a (median inhibitory concentration 0.90 microg/mL) correlates well with its low minimum inhibitory concentration for MRSA. Ceftaroline is active in vitro against Gram-positive cocci, including MRSA, meticillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococcus faecalis (not E. faecium). The broad-spectrum activity of ceftaroline includes many Gram-negative pathogens but does not extend to extended-spectrum beta-lactamase-producing or AmpC-derepressed Enterobacteriaceae or most nonfermentative Gram-negative bacilli. Ceftaroline demonstrates limited activity against anaerobes such as Bacteroides fragilis and non-fragilis Bacteroides spp. Limited data show that ceftaroline has a low propensity to select for resistant subpopulations. Ceftaroline fosamil (prodrug) is rapidly converted by plasma phosphatases to active ceftaroline. For multiple intravenous doses of 600 mg given over 1 h every 12 hours for 14 days, the maximum plasma concentration was 19.0 microg/mL and 21.0 microg/mL for first and last dose, respectively. Ceftaroline has a volume of distribution of 0.37 L/kg (28.3 L), low protein binding (<20%) and a serum half-life of 2.6 hours. No drug accumulation occurs with multiple doses and elimination occurs primarily through renal excretion (49.6%). Based on Monte Carlo simulations, dosage adjustment is recommended for patients with moderate renal impairment (creatinine clearance 30-50 mL/min); no adjustment is needed for mild renal impairment. Currently, limited clinical trial data are available for ceftaroline. A phase II study randomized 100 patients with cSSSI to intravenous ceftaroline 600 mg every 12 hours or intravenous vancomycin 1 g every 12 hours with or without intravenous aztreonam 1 g every 8 hours (standard therapy) for 7-14 days. Clinical cure rates were 96.7% for ceftaroline compared with 88.9% for standard therapy. Adverse events were similar between groups and generally mild in nature. In a phase III trial, 702 patients with cSSSI were randomized to ceftaroline 600 mg or vancomycin 1 g plus aztreonam 1 g, each administered intravenously every 12 hours for 5-14 days. Ceftaroline was noninferior to vancomycin plus aztreonam in treating cSSSI caused by both Gram-positive and -negative pathogens. Adverse event rates were similar between groups. Ceftaroline is well tolerated, which is consistent with the good safety and tolerability profile of the cephalosporin class. In summary, ceftaroline is a promising treatment for cSSSI and CAP, and has potential to be used as monotherapy for polymicrobial infections because of its broad-spectrum activity. Further clinical studies are needed to determine the efficacy and safety of ceftaroline, and to define its role in patient care.


Expert Review of Anti-infective Therapy | 2012

Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin

George G. Zhanel; Christopher Lawson; Sheryl Zelenitsky; Brandon Findlay; Frank Schweizer; Heather J. Adam; Andrew Walkty; Ethan Rubinstein; Alfred S. Gin; Daryl J. Hoban; Joseph P. Lynch; James A. Karlowsky

Plazomicin (formerly ACHN-490) is a next-generation aminoglycoside that was synthetically derived from sisomicin by appending a hydroxy-aminobutyric acid substituent at position 1 and a hydroxyethyl substituent at position 6′. Plazomicin inhibits bacterial protein synthesis and exhibits dose-dependent bactericidal activity. Plazomicin demonstrates activity against both Gram-negative and Gram-positive bacterial pathogens, including isolates harboring any of the clinically relevant aminoglycoside-modifying enzymes. However, like older parenteral aminoglycosides, plazomicin is not active against bacterial isolates expressing ribosomal methyltransferases conferring aminoglycoside resistance. Plazomicin has been reported to demonstrate in vitro synergistic activity when combined with daptomycin or ceftobiprole versus methicillin-resistant Staphylococcus aureus, heteroresistant vancomycin-intermediate S. aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant S. aureus and against Pseudomonas aeruginosa when combined with cefepime, doripenem, imipenem or piperacillin-tazobactam. After intravenous administration of plazomicin to humans at a dose of 15 mg/ kg, the maximum concentraration was 113 μg/ml, the area under the curve0–24 was 239 h·μg/ml, the half-life was 4.0 h and the steady-state volume of distribution was 0.24 L/kg. Results from a Phase II randomized, double-blind study in patients with complicated urinary tract infection and acute pyelonephritis including cases with concurrent bacteremia comparing plazomicin 15 mg/kg intravenously once daily for 5 days with levofloxacin 750 mg intravenously. for 5 days are anticipated in 2012. Human studies to date have not reported nephrotoxicity or ototoxicity, and lack of ototoxicity has been reported in the guinea pig model. Given reported increases in bacterial resistance to current antimicrobial agents and the lack of availability of new agents with novel mechanisms, plazomicin may become a welcomed addition to the antibacterial armamentarium pending positive results from large-scale clinical trials and other required clinical studies.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, and Antibacterial Activities of Neomycin-Lipid Conjugates : Polycationic Lipids with Potent Gram-Positive Activity

Smritilekha Bera; George G. Zhanel; Frank Schweizer

Aminoglycoside antibiotics and cationic detergents constitute two classes of clinically important drugs and antiseptics. Their bacteriological and clinical efficacy, however, has decreased recently due to antibiotic resistance. We have synthesized aminoglycoside-lipid conjugates in which the aminoglycoside neomycin forms the cationic headgroup of a polycationic detergent. Our results show that neomycin-C16 and neomycin-C20 conjugates exhibit strong Gram-positive activity but reduced Gram-negative activity. The MIC of neomycin-C16 (C20) conjugates against methicillin-resistant Staphylococcus aureus (MRSA) is comparable to clinically used antiseptics.


Current Opinion in Chemical Biology | 1999

Combinatorial synthesis of carbohydrates

Frank Schweizer; Ole Hindsgaul

Combinatorial chemistry principles have been applied to the generation of oligosaccharide libraries, both in solution and on the solid phase, with a view to producing inhibitors of carbohydrate-protein binding. The rich stereochemistry and high degree of functionalization of sugars has also resulted in their increasing use in the synthesis of glycomimetics and as scaffolds for the presentation of pharmacophore groupings to receptors that are noncarbohydrate-recognizing proteins.

Collaboration


Dive into the Frank Schweizer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge