Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey A. Gorchakov is active.

Publication


Featured researches published by Andrey A. Gorchakov.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature | 2011

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter V. Kharchenko; Artyom A. Alekseyenko; Yuri B. Schwartz; Aki Minoda; Nicole C. Riddle; Jason Ernst; Peter J. Sabo; Erica Larschan; Andrey A. Gorchakov; Tingting Gu; Daniela Linder-Basso; Annette Plachetka; Gregory Shanower; Michael Y. Tolstorukov; Lovelace J. Luquette; Ruibin Xi; Youngsook L. Jung; Richard Park; Eric P. Bishop; Theresa P. Canfield; Richard Sandstrom; Robert E. Thurman; David M. MacAlpine; John A. Stamatoyannopoulos; Manolis Kellis; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Gary H. Karpen; Peter J. Park

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Nature Structural & Molecular Biology | 2011

An assessment of histone-modification antibody quality.

Thea A. Egelhofer; Aki Minoda; Sarit Klugman; Kyungjoon Lee; Paulina Kolasinska-Zwierz; Artyom A. Alekseyenko; Ming Sin Cheung; Daniel S. Day; Sarah Gadel; Andrey A. Gorchakov; Tingting Gu; Peter V. Kharchenko; Samantha Kuan; Isabel Latorre; Daniela Linder-Basso; Ying Luu; Queminh Ngo; M. Perry; Andreas Rechtsteiner; Nicole C. Riddle; Yuri B. Schwartz; Gregory Shanower; Anne Vielle; Julie Ahringer; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Bing Ren; Susan Strome; Peter J. Park

We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).


Genome Research | 2012

Nature and function of insulator protein binding sites in the Drosophila genome

Yuri B. Schwartz; Daniela Linder-Basso; Peter V. Kharchenko; Michael Y. Tolstorukov; Maria Kim; Hua-Bing Li; Andrey A. Gorchakov; Aki Minoda; Gregory Shanower; Artyom A. Alekseyenko; Nicole C. Riddle; Youngsook L. Jung; Tingting Gu; Annette Plachetka; Sarah C. R. Elgin; Mitzi I. Kuroda; Peter J. Park; Mikhail Savitsky; Gary H. Karpen; Vincenzo Pirrotta

Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.


Nature Structural & Molecular Biology | 2013

Chromatin proteins captured by ChIP–mass spectrometry are linked to dosage compensation in Drosophila

Charlotte I. Wang; Artyom A. Alekseyenko; Gary LeRoy; Andrew Elia; Andrey A. Gorchakov; Laura-Mae P Britton; Stephen J. Elledge; Peter V. Kharchenko; Benjamin A. Garcia; Mitzi I. Kuroda

X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL interactions on cross-linked chromatin. We identified MSL-enriched histone modifications, including histone H4 Lys16 acetylation and histone H3 Lys36 methylation, and CG4747, a putative Lys36-trimethylated histone H3 (H3K36me3)-binding protein. CG4747 is associated with the bodies of active genes, coincident with H3K36me3, and is mislocalized in the Set2 mutant lacking H3K36me3. CG4747 loss of function in vivo results in partial mislocalization of the MSL complex to autosomes, and RNA interference experiments confirm that CG4747 and Set2 function together to facilitate targeting of the MSL complex to active genes, validating the ChIP-MS approach.


PLOS Biology | 2013

The Epigenome of Evolving Drosophila Neo-Sex Chromosomes: Dosage Compensation and Heterochromatin Formation

Qi Zhou; Christopher E. Ellison; Vera B. Kaiser; Artyom A. Alekseyenko; Andrey A. Gorchakov; Doris Bachtrog

This study shows how young sex chromosomes have altered their chromatin structure in Drosophila, and what genomic changes have led to silencing of the Y, and hyper-transcription of the X.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification

Artyom A. Alekseyenko; Andrey A. Gorchakov; Peter V. Kharchenko; Mitzi I. Kuroda

Significance The fidelity of gene expression is regulated by chromosome-associated protein complexes. A traditional approach to characterizing complexes bound to chromosomes requires their release from the DNA to solubilize them. Here we develop an alternative approach, BioTAP-XL, that allows identification of protein–protein interactions while complexes remain linked to the DNA. We focus on protein interactions and genome localization of human EZH2 and two of its relatively uncharacterized interactors, C10orf12 and C17orf96. Our results provide strong evidence for diversity in human Polycomb repressive complexes, which are composed of factors essential for gene silencing during development in higher organisms. We propose that BioTAP-XL is an effective general approach for investigating the composition and subunit diversity of chromosome-associated complexes. Understanding the composition of epigenetic regulators remains an important challenge in chromatin biology. Traditional biochemical analysis of chromatin-associated complexes requires their release from DNA under conditions that can also disrupt key interactions. Here we develop a complementary approach (BioTAP-XL), in which cross-linking (XL) enhances the preservation of protein interactions and also allows the analysis of DNA targets under the same tandem affinity purification (BioTAP) regimen. We demonstrate the power of BioTAP-XL through analysis of human EZH2, a core subunit of polycomb repressive complex 2 (PRC2). We identify and validate two strong interactors, C10orf12 and C17orf96, which display enrichment with EZH2-BioTAP at levels similar to canonical PRC2 components (SUZ12, EED, MTF2, JARID2, PHF1, and AEBP2). ChIP-seq analysis of BioTAP-tagged C10orf12 or C17orf96 revealed the similarity of each binding pattern with the location of EZH2 and the H3K27me3-silencing mark, validating their physical interaction with PRC2 components. Interestingly, analysis by mass spectrometry of C10orf12 and C17orf96 interactions revealed that these proteins may be mutually exclusive PRC2 subunits that fail to interact with each other or with JARID2 and AEBP2. C10orf12, in addition, shows a strong and unexpected association with components of the EHMT1/2 complex, thus potentially connecting PRC2 to another histone methyltransferase. Similarly, results from CBX4-BioTAP protein pulldowns are consistent with reports of a diversity of PRC1 complexes. Our results highlight the importance of reciprocal analyses of multiple subunits and suggest that iterative use of BioTAP-XL has strong potential to reveal networks of chromatin-based interactions in higher organisms.


PLOS Genetics | 2012

Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.

Artyom A. Alekseyenko; Joshua W. K. Ho; Shouyong Peng; Marnie E. Gelbart; Michael Y. Tolstorukov; Annette Plachetka; Peter V. Kharchenko; Youngsook L. Jung; Andrey A. Gorchakov; Erica Larschan; Tingting Gu; Aki Minoda; Nicole C. Riddle; Yuri B. Schwartz; Sarah C. R. Elgin; Gary H. Karpen; Vincenzo Pirrotta; Mitzi I. Kuroda; Peter J. Park

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at “entry sites” that contain a consensus sequence motif (“MSL recognition element” or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.


Genes & Development | 2009

Long-range spreading of dosage compensation in Drosophila captures transcribed autosomal genes inserted on X

Andrey A. Gorchakov; Artyom A. Alekseyenko; Peter V. Kharchenko; Peter J. Park; Mitzi I. Kuroda

Dosage compensation in Drosophila melanogaster males is achieved via targeting of male-specific lethal (MSL) complex to X-linked genes. This is proposed to involve sequence-specific recognition of the X at approximately 150-300 chromatin entry sites, and subsequent spreading to active genes. Here we ask whether the spreading step requires transcription and is sequence-independent. We find that MSL complex binds, acetylates, and up-regulates autosomal genes inserted on X, but only if transcriptionally active. We conclude that a long-sought specific DNA sequence within X-linked genes is not obligatory for MSL binding. Instead, linkage and transcription play the pivotal roles in MSL targeting irrespective of gene origin and DNA sequence.


Genes & Development | 2013

Conservation and de novo acquisition of dosage compensation on newly evolved sex chromosomes in Drosophila

Artyom A. Alekseyenko; Christopher E. Ellison; Andrey A. Gorchakov; Qi Zhou; Vera B. Kaiser; Nick Toda; Zaak Walton; Shouyong Peng; Peter J. Park; Doris Bachtrog; Mitzi I. Kuroda

Dosage compensation has arisen in response to the evolution of distinct male (XY) and female (XX) karyotypes. In Drosophila melanogaster, the MSL complex increases male X transcription approximately twofold. X-specific targeting is thought to occur through sequence-dependent binding to chromatin entry sites (CESs), followed by spreading in cis to active genes. We tested this model by asking how newly evolving sex chromosome arms in Drosophila miranda acquired dosage compensation. We found evidence for the creation of new CESs, with the analogous sequence and spacing as in D. melanogaster, providing strong support for the spreading model in the establishment of dosage compensation.

Collaboration


Dive into the Andrey A. Gorchakov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitzi I. Kuroda

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Minoda

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole C. Riddle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sarah C. R. Elgin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge