Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Artyom A. Alekseyenko is active.

Publication


Featured researches published by Artyom A. Alekseyenko.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature | 2011

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter V. Kharchenko; Artyom A. Alekseyenko; Yuri B. Schwartz; Aki Minoda; Nicole C. Riddle; Jason Ernst; Peter J. Sabo; Erica Larschan; Andrey A. Gorchakov; Tingting Gu; Daniela Linder-Basso; Annette Plachetka; Gregory Shanower; Michael Y. Tolstorukov; Lovelace J. Luquette; Ruibin Xi; Youngsook L. Jung; Richard Park; Eric P. Bishop; Theresa P. Canfield; Richard Sandstrom; Robert E. Thurman; David M. MacAlpine; John A. Stamatoyannopoulos; Manolis Kellis; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Gary H. Karpen; Peter J. Park

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Nature Structural & Molecular Biology | 2011

An assessment of histone-modification antibody quality.

Thea A. Egelhofer; Aki Minoda; Sarit Klugman; Kyungjoon Lee; Paulina Kolasinska-Zwierz; Artyom A. Alekseyenko; Ming Sin Cheung; Daniel S. Day; Sarah Gadel; Andrey A. Gorchakov; Tingting Gu; Peter V. Kharchenko; Samantha Kuan; Isabel Latorre; Daniela Linder-Basso; Ying Luu; Queminh Ngo; M. Perry; Andreas Rechtsteiner; Nicole C. Riddle; Yuri B. Schwartz; Gregory Shanower; Anne Vielle; Julie Ahringer; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Bing Ren; Susan Strome; Peter J. Park

We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).


Proceedings of the National Academy of Sciences of the United States of America | 2011

The genomic binding sites of a noncoding RNA

Matthew D. Simon; Charlotte I. Wang; Peter V. Kharchenko; Jason A. West; Brad Chapman; Artyom A. Alekseyenko; Mark L. Borowsky; Mitzi I. Kuroda; Robert E. Kingston

Long noncoding RNAs (lncRNAs) have important regulatory roles and can function at the level of chromatin. To determine where lncRNAs bind to chromatin, we developed capture hybridization analysis of RNA targets (CHART), a hybridization-based technique that specifically enriches endogenous RNAs along with their targets from reversibly cross-linked chromatin extracts. CHART was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans. This analysis was extended to genome-wide mapping of roX2, a well-studied ncRNA involved in dosage compensation in Drosophila. CHART revealed that roX2 binds at specific genomic sites that coincide with the binding sites of proteins from the male-specific lethal complex that affects dosage compensation. These results reveal the genomic targets of roX2 and demonstrate how CHART can be used to study RNAs in a manner analogous to chromatin immunoprecipitation for proteins.


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Genome Research | 2012

Nature and function of insulator protein binding sites in the Drosophila genome

Yuri B. Schwartz; Daniela Linder-Basso; Peter V. Kharchenko; Michael Y. Tolstorukov; Maria Kim; Hua-Bing Li; Andrey A. Gorchakov; Aki Minoda; Gregory Shanower; Artyom A. Alekseyenko; Nicole C. Riddle; Youngsook L. Jung; Tingting Gu; Annette Plachetka; Sarah C. R. Elgin; Mitzi I. Kuroda; Peter J. Park; Mikhail Savitsky; Gary H. Karpen; Vincenzo Pirrotta

Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.


Chromosoma | 2003

The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster

Olga V. Demakova; Irina V. Kotlikova; Polina R. Gordadze; Artyom A. Alekseyenko; Mitzi I. Kuroda; Igor F. Zhimulev

In Drosophila, dosage compensation requires assembly of the Male Specific Lethal (MSL) protein complex for doubling transcription of most X-linked genes in males. The recognition of the X chromosome by the MSL complex has been suggested to include initial assembly at ~35 chromatin entry sites and subsequent spreading of mature complexes in cis to numerous additional sites along the chromosome. To understand this process further we examined MSL patterns in a range of wild-type and mutant backgrounds producing different amounts of MSL components. Our data support a model in which MSL complex binding to the X is directed by a hierarchy of target sites that display different affinities for the MSL proteins. Chromatin entry sites differ in their ability to provide local intensive binding of complexes to adjacent regions, and need high MSL complex titers to achieve this. We also mapped a set of definite autosomal regions (~70) competent to associate with the functional MSL complex in wild-type males. Overexpression of both MSL1 and MSL2 stabilizes this binding and results in inappropriate MSL binding to the chromocenter and the 4th chromosome. Thus, wild-type MSL complex titers are critical for correct targeting to the X chromosome.


Nature Structural & Molecular Biology | 2013

Chromatin proteins captured by ChIP–mass spectrometry are linked to dosage compensation in Drosophila

Charlotte I. Wang; Artyom A. Alekseyenko; Gary LeRoy; Andrew Elia; Andrey A. Gorchakov; Laura-Mae P Britton; Stephen J. Elledge; Peter V. Kharchenko; Benjamin A. Garcia; Mitzi I. Kuroda

X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL interactions on cross-linked chromatin. We identified MSL-enriched histone modifications, including histone H4 Lys16 acetylation and histone H3 Lys36 methylation, and CG4747, a putative Lys36-trimethylated histone H3 (H3K36me3)-binding protein. CG4747 is associated with the bodies of active genes, coincident with H3K36me3, and is mislocalized in the Set2 mutant lacking H3K36me3. CG4747 loss of function in vivo results in partial mislocalization of the MSL complex to autosomes, and RNA interference experiments confirm that CG4747 and Set2 function together to facilitate targeting of the MSL complex to active genes, validating the ChIP-MS approach.


The EMBO Journal | 2004

Sequence‐specific targeting of MSL complex regulates transcription of the roX RNA genes

Xiaoying Bai; Artyom A. Alekseyenko; Mitzi I. Kuroda

In Drosophila, dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of at least five proteins and two noncoding RNAs, roX1 and roX2. The roX RNAs function in targeting MSL complex to the X chromosome, and roX transgenes can nucleate spreading of the MSL complex into flanking chromatin when inserted on an autosome. An MSL‐binding site (DHS, DNaseI hypersensitive site) has been identified in each roX gene. Here, we investigate the functions of the DHS using transgenic deletion analyses and reporter assays. We find that MSL interaction with the DHS counteracts constitutive repression at roX1, resulting in male‐specific expression of roX1 RNA. Surprisingly, the DHS is not required for initiation of cis spreading of MSL complex, instead local transcription of roX RNAs correlates with extensive spreading.


PLOS Biology | 2013

The Epigenome of Evolving Drosophila Neo-Sex Chromosomes: Dosage Compensation and Heterochromatin Formation

Qi Zhou; Christopher E. Ellison; Vera B. Kaiser; Artyom A. Alekseyenko; Andrey A. Gorchakov; Doris Bachtrog

This study shows how young sex chromosomes have altered their chromatin structure in Drosophila, and what genomic changes have led to silencing of the Y, and hyper-transcription of the X.

Collaboration


Dive into the Artyom A. Alekseyenko's collaboration.

Top Co-Authors

Avatar

Mitzi I. Kuroda

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Minoda

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole C. Riddle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tingting Gu

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge