Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey Tovchigrechko is active.

Publication


Featured researches published by Andrey Tovchigrechko.


Nature | 2010

Genomic and functional adaptation in surface ocean planktonic prokaryotes

Shibu Yooseph; Kenneth H. Nealson; Douglas B. Rusch; John P. McCrow; Christopher L. Dupont; Maria Kim; Justin Johnson; Robert Montgomery; Steve Ferriera; Karen Beeson; Shannon J. Williamson; Andrey Tovchigrechko; Andrew E. Allen; Lisa Zeigler; Granger Sutton; Eric Eisenstadt; Yu-Hui Rogers; Robert Friedman; Marvin Frazier; J. Craig Venter

The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1–3.0 μm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.


PLOS ONE | 2014

Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

Chris L. Dupont; John Larsson; Shibu Yooseph; Karolina Ininbergs; Johannes Goll; Johannes Asplund-Samuelsson; John P. McCrow; Narin Celepli; Lisa Zeigler Allen; Martin Ekman; Andrew J. Lucas; Åke Hagström; Mathangi Thiagarajan; Björn Brindefalk; Alexander R. Richter; Anders F. Andersson; Aaron Tenney; Daniel Lundin; Andrey Tovchigrechko; Johan A. A. Nylander; Daniel Brami; Jonathan H. Badger; Andrew E. Allen; Douglas B. Rusch; Jeff Hoffman; Erling Norrby; Robert Friedman; Jarone Pinhassi; J. Craig Venter; Birgitta Bergman

Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.


PLOS ONE | 2012

Metagenomic exploration of viruses throughout the Indian Ocean.

Shannon J. Williamson; Lisa Zeigler Allen; Hernan Lorenzi; Douglas W. Fadrosh; Daniel Brami; Mathangi Thiagarajan; John P. McCrow; Andrey Tovchigrechko; Shibu Yooseph; J. Craig Venter

The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions.


PLOS Genetics | 2012

RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors

Roman Häuser; Markus Pech; Jaroslaw Kijek; Hiroshi Yamamoto; Björn Titz; Florian Naeve; Andrey Tovchigrechko; Kaori Yamamoto; Withold Szaflarski; Nono Takeuchi; Thorsten Stellberger; Markus E. Diefenbacher; Knud H. Nierhaus; Peter Uetz

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


American Journal of Respiratory and Critical Care Medicine | 2016

Nasopharyngeal Microbiome in Respiratory Syncytial Virus Resembles Profile Associated with Increased Childhood Asthma Risk

Christian Rosas-Salazar; Andrey Tovchigrechko; James D. Chappell; Emma K. Larkin; Karen E. Nelson; Martin L. Moore; Larry J. Anderson; Suman R. Das; Tina V. Hartert

in elite athletes–an occupational lung disease?Allergy 2013;68:1343–1352. 3. Dryden DM, Spooner CH, Stickland MK, Vandermeer B, Tjosvold L, Bialy L, Wong K, Rowe BH. Exercise-induced bronchoconstriction and asthma. Evid Rep Technol Asssess (Full Rep) 2010;189:1–154. 4. Anderson SD, Argyros GJ, Magnussen H, Holzer K. Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. Br J Sports Med 2001;35:344–347. 5. Hurwitz KM, Argyros GJ, Roach JM, Eliasson AH, Phillips YY. Interpretation of eucapnic voluntary hyperventilation in the diagnosis of asthma. Chest 1995;108:1240–1245. 6. Argyros GJ, Roach JM, Hurwitz KM, Eliasson AH, Phillips YY. Eucapnic voluntary hyperventilation as a bronchoprovocation technique: development of a standarized dosing schedule in asthmatics. Chest 1996;109:1520–1524. 7. Helenius IJ, Tikkanen HO, Haahtela T. Occurrence of exercise induced bronchospasm in elite runners: dependence on atopy and exposure to cold air and pollen. Br J Sports Med 1998;32:125–129. 8. Price OJ, Ansley L, Hull JH. Diagnosing exercise-induced bronchoconstriction with eucapnic voluntary hyperpnea: is one test enough? J Allergy Clin Immunol Pract 2015;3:243–249. 9. Nielsen EW, Hull JH, Backer V. High prevalence of exercise-induced laryngeal obstruction in athletes. Med Sci Sports Exerc 2013;45: 2030–2035.


Eurosurveillance | 2015

Haemagglutinin mutations and glycosylation changes shaped the 2012/13 influenza A(H3N2) epidemic, Houston, Texas.

Karla M. Stucker; Seth Schobel; Randall J. Olsen; H. L. Hodges; Xudong Lin; Rebecca A. Halpin; Nadia Fedorova; Timothy B. Stockwell; Andrey Tovchigrechko; Suman R. Das; David E. Wentworth; James M. Musser

While the early start and higher intensity of the 2012/13 influenza A virus (IAV) epidemic was not unprecedented, it was the first IAV epidemic season since the 2009 H1N1 influenza pandemic where the H3N2 subtype predominated. We directly sequenced the genomes of 154 H3N2 clinical specimens collected throughout the epidemic to better understand the evolution of H3N2 strains and to inform the H3N2 vaccine selection process. Phylogenetic analyses indicated that multiple co-circulating clades and continual antigenic drift in the haemagglutinin (HA) of clades 5, 3A, and 3C, with the evolution of a new 3C subgroup (3C-2012/13), were the driving causes of the epidemic. Drift variants contained HA substitutions and alterations in the potential N-linked glycosylation sites of HA. Antigenic analysis demonstrated that viruses in the emerging subclade 3C.3 and subgroup 3C-2012/13 were not well inhibited by antisera generated against the 3C.1 vaccine strains used for the 2012/13 (A/Victoria/361/2011) or 2013/14 (A/Texas/50/2012) seasons. Our data support updating the H3N2 vaccine strain to a clade 3C.2 or 3C.3-like strain or a subclade that has drifted further. They also underscore the challenges in vaccine strain selection, particularly regarding HA and neuraminidase substitutions derived during laboratory passage that may alter antigenic testing accuracy.


Microbial Ecology | 2016

Minimally Invasive Sampling Method Identifies Differences in Taxonomic Richness of Nasal Microbiomes in Young Infants Associated with Mode of Delivery.

Christian Rosas-Salazar; Andrey Tovchigrechko; Emma K. Larkin; Manolito Torralba; Asmik Akopov; Rebecca A. Halpin; R. Stokes Peebles; Martin L. Moore; Larry J. Anderson; Karen E. Nelson; Tina V. Hartert; Suman R. Das

To date, there is a limited understanding of the role of the airway microbiome in the early life development of respiratory diseases such as asthma, partly due to a lack of simple and minimally invasive sample collection methods. In order to characterize the baseline microbiome of the upper respiratory tract (URT) in infants, a comparatively non-invasive method for sampling the URT microbiome suitable for use in infants was developed. Microbiome samples were collected by placing filter paper in the nostrils of 33 healthy, term infants enrolled as part of the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure (INSPIRE) study. After bacterial genomic DNA was extracted from the filters, amplicons were generated with universal primers targeting the V1–V3 region of the 16S rRNA gene. This method was capable of capturing a wide variety of taxa expected to inhabit the nasal cavity. Analyses stratifying subjects by demographic and environmental factors previously observed or predicted to influence microbial communities were performed. Microbial community richness was found to be higher in infants who had been delivered via Cesarean section and in those who had been formula-fed; an association was observed between diet and delivery, which confounds this analysis. We have established a baseline URT microbiome using a non-invasive filter paper nasal sampling for this population, and future studies will be performed in this large observational cohort of infants to investigate the relationship between viral infections, the URT microbiota, and the development of childhood wheezing illnesses.


Journal of Proteome Research | 2015

Quantitative Differences in the Urinary Proteome of Siblings Discordant for Type 1 Diabetes Include Lysosomal Enzymes.

Moo-Jin Suh; Andrey Tovchigrechko; Vishal Thovarai; Melanie A. Rolfe; Manolito Torralba; Junmin Wang; Joshua N. Adkins; Bobbie-Jo M. Webb-Robertson; Whitney Osborne; Fran R. Cogen; Paul B. Kaplowitz; Thomas O. Metz; Karen E. Nelson; Ramana Madupu; Rembert Pieper

Individuals with type 1 diabetes (T1D) often have higher than normal blood glucose levels, causing advanced glycation end product formation and inflammation and increasing the risk of vascular complications years or decades later. To examine the urinary proteome in juveniles with T1D for signatures indicative of inflammatory consequences of hyperglycemia, we profiled the proteome of 40 T1D patients with an average of 6.3 years after disease onset and normal or elevated HbA1C levels, in comparison with a cohort of 41 healthy siblings. Using shotgun proteomics, 1036 proteins were identified, on average, per experiment, and 50 proteins showed significant abundance differences using a Wilcoxon signed-rank test (FDR q-value ≤ 0.05). Thirteen lysosomal proteins were increased in abundance in the T1D versus control cohort. Fifteen proteins with functional roles in vascular permeability and adhesion were quantitatively changed, including CD166 antigen and angiotensin-converting enzyme 2. α-N-Acetyl-galactosaminidase and α-fucosidase 2, two differentially abundant lysosomal enzymes, were detected in western blots with often elevated quantities in the T1D versus control cohort. Increased release of proteins derived from lysosomes and vascular epithelium into urine may result from hyperglycemia-associated inflammation in the kidney vasculature.


PLOS ONE | 2016

A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation

Jason D. Marshall; Darren S. Heeke; Eileen Rao; Sean K. Maynard; David Hornigold; Christopher McCrae; Neil Fraser; Andrey Tovchigrechko; Li Yu; Nicola Williams; Sarah King; Martin E. Cooper; Adeline M. Hajjar; Jennifer Woo

The best-characterized Toll-like receptor 4 (TLR4) ligands are lipopolysaccharide (LPS) and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL). Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL. Products of the 4-component Ugi synthesis reaction were demonstrated to potently trigger human TLR4-transfected HEK cells but not mouse TLR4, although inclusion of the human MD2 with mTLR4 was able to partially recover activity. Co-expression of CD14 was not required for optimal activity of Ugi compounds on transfected cells, as it is for LPS. The species preference profile for the panel of Ugi compounds was found to be strongly active for human and cynomolgus monkey primary cells, with reduced but still substantial activity for most Ugi compounds on guinea pig cells. Mouse, rat, rabbit, ferret, and cotton rat cells displayed little or no activity when exposed to Ugi compounds. However, engineering the human versions of TLR4 and MD2 to be expressed in mTLR4/MD2 deficient mice allowed for robust activity by Ugi compounds both in vitro and in vivo. These findings extend the range of compounds available for development as agonists of TLR4 and identify novel molecules which reverse the TLR4 triggering preference of MPL for mouse TLR4 over human TLR4. Such compounds may be amenable to formulation as more potent human-specific TLR4L-based adjuvants than typical MPL-based adjuvants.


Theranostics | 2017

Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function

Harinder Singh; Yanbao Yu; Moo-Jin Suh; Manolito Torralba; Robert D. Stenzel; Andrey Tovchigrechko; Vishal Thovarai; Derek M. Harkins; Seesandra V. Rajagopala; Whitney Osborne; Fran R. Cogen; Paul B. Kaplowitz; Karen E. Nelson; Ramana Madupu; Rembert Pieper

While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.

Collaboration


Dive into the Andrey Tovchigrechko's collaboration.

Top Co-Authors

Avatar

Karen E. Nelson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Shibu Yooseph

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Suman R. Das

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina V. Hartert

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge