Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrey V. Mardanov is active.

Publication


Featured researches published by Andrey V. Mardanov.


Environmental Microbiology | 2013

Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae

Olga A. Podosokorskaya; Vitaly V. Kadnikov; Sergey Gavrilov; Andrey V. Mardanov; Alexander Y. Merkel; Olga V. Karnachuk; N. V. Ravin; Elizaveta A. Bonch-Osmolovskaya; Ilya V. Kublanov

A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically.


Applied and Environmental Microbiology | 2009

Metabolic Versatility and Indigenous Origin of the Archaeon Thermococcus sibiricus, Isolated from a Siberian Oil Reservoir, as Revealed by Genome Analysis

Andrey V. Mardanov; Nikolai V. Ravin; Vitali A. Svetlitchnyi; Alexey V. Beletsky; Margarita L. Miroshnichenko; Elizaveta A. Bonch-Osmolovskaya; K. G. Skryabin

ABSTRACT Thermococcus species are widely distributed in terrestrial and marine hydrothermal areas, as well as in deep subsurface oil reservoirs. Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a well of the never flooded oil-bearing Jurassic horizon of a high-temperature oil reservoir. To obtain insight into the genome of an archaeon inhabiting the oil reservoir, we have determined and annotated the complete 1,845,800-base genome of T. sibiricus. A total of 2,061 protein-coding genes have been identified, 387 of which are absent in other members of the order Thermococcales. Physiological features and genomic data reveal numerous hydrolytic enzymes (e.g., cellulolytic enzymes, agarase, laminarinase, and lipases) and metabolic pathways, support the proposal of the indigenous origin of T. sibiricus in the oil reservoir, and explain its survival over geologic time and its proliferation in this habitat. Indeed, in addition to proteinaceous compounds known previously to be present in oil reservoirs at limiting concentrations, its growth was stimulated by cellulose, agarose, and triacylglycerides, as well as by alkanes. Two polysaccharide degradation loci were probably acquired by T. sibiricus from thermophilic bacteria following lateral gene transfer events. The first, a “saccharolytic gene island” absent in the genomes of other members of the order Thermococcales, contains the complete set of genes responsible for the hydrolysis of cellulose and β-linked polysaccharides. The second harbors genes for maltose and trehalose degradation. Considering that agarose and laminarin are components of algae, the encoded enzymes and the substrate spectrum of T. sibiricus indicate the ability to metabolize the buried organic matter from the original oceanic sediment.


FEMS Microbiology Ecology | 2012

Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal.

Vitaly V. Kadnikov; Andrey V. Mardanov; Alexey V. Beletsky; Olga V. Shubenkova; Tatiana V. Pogodaeva; T. I. Zemskaya; Nikolai V. Ravin; K. G. Skryabin

Gas hydrates in marine sediments have been known for many years but recently hydrates were found in the sediments of Lake Baikal, the largest freshwater basin in the world. Marine gas hydrates are associated with complex microbial communities involved in methanogenesis, methane oxidation, sulfate reduction and other biotransformations. However, the contribution of microorganisms to the formation of gas hydrates remains poorly understood. We examined the microbial communities in the hydrate-bearing sediments and water column of Lake Baikal using pyrosequencing of 16S rRNA genes. Aerobic methanotrophic bacteria dominated the water sample collected at the lake floor in the hydrate-bearing site. The shallow sediments were dominated by Archaea. Methanogens of the orders Methanomicrobiales and Methanosarcinales were abundant, whereas representatives of archaeal lineages known to perform anaerobic oxidation of methane, as well as sulfate-reducing bacteria, were not found. Affiliation of archaea to methanogenic rather than methane-oxidizing lineages was supported by analysis of the sequences of the methyl coenzyme M reductase gene. The deeper sediments located at 85-90 cm depth close to the hydrate were dominated by Bacteria, mostly assigned to Chloroflexi, candidate division JS1 and Caldiserica. Overall, our results are consistent with the biological origin of methane hydrates in Lake Baikal.


BMC Genomics | 2013

Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1

Nikolai V. Ravin; El'darov Ma; Vitaly V. Kadnikov; Alexey V. Beletsky; Jessica Schneider; E. S. Mardanova; E. M. Smekalova; Maria I. Zvereva; Olga A. Dontsova; Andrey V. Mardanov; K. G. Skryabin

BackgroundHansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production.ResultsWe have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi.ConclusionsOur results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.


Microbial Ecology | 2015

Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs

Peter Menzel; Soley Gudbergsdottir; Anne Gunn Rike; Lianbing Lin; Qi Zhang; Patrizia Contursi; Marco Moracci; Jakob K. Kristjánsson; Benjamin Bolduc; Sergey Gavrilov; Nikolai V. Ravin; Andrey V. Mardanov; Elizaveta A. Bonch-Osmolovskaya; Mark J. Young; Anders Krogh; Xu Peng

Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 ∘C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.


Journal of Bacteriology | 2009

Complete Genome Sequence of the Anaerobic, Protein-Degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis

Nikolai V. Ravin; Andrey V. Mardanov; Alexey V. Beletsky; Ilya V. Kublanov; Tatiana V. Kolganova; Alexander V. Lebedinsky; Nikolai A. Chernyh; Elizaveta A. Bonch-Osmolovskaya; K. G. Skryabin

Desulfurococcus kamchatkensis is an anaerobic organotrophic hyperthermophilic crenarchaeon isolated from a terrestrial hot spring. Its genome consists of a single circular chromosome of 1,365,223 bp with no extrachromosomal elements. A total of 1,474 protein-encoding genes were annotated, among which 205 are exclusive for D. kamchatkensis. The search for a replication origin site revealed a single region coinciding with a global extreme of the nucleotide composition disparity curve and containing a set of crenarchaeon-type origin recognition boxes. Unlike in most archaea, two genes encoding homologs of the eukaryotic initiator proteins Orc1 and Cdc6 are located distantly from this site. A number of mobile elements are present in the genome, including seven transposons representing IS607 and IS200/IS605 families and multiple copies of miniature inverted repeat transposable elements. Two large clusters of regularly interspaced repeats are present; none of the spacer sequences matches known archaeal extrachromosomal elements, except one spacer matches the sequence of a resident gene of D. kamchatkensis. Many of the predicted metabolic enzymes are associated with the fermentation of peptides and sugars, including more than 30 peptidases with diverse specificities, a number of polysaccharide degradation enzymes, and many transporters. Consistently, the genome encodes both enzymes of the modified Embden-Meyerhof pathway of glucose oxidation and a set of enzymes needed for gluconeogenesis. The genome structure and content reflect the organisms nutritionally diverse, competitive natural environment, which is periodically invaded by viruses and other mobile elements.


PLOS ONE | 2013

Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

Vitaly V. Kadnikov; Andrey V. Mardanov; Olga A. Podosokorskaya; Sergey Gavrilov; Ilya V. Kublanov; Alexey V. Beletsky; Elizaveta A. Bonch-Osmolovskaya; Nikolai V. Ravin

Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.


Applied and Environmental Microbiology | 2010

The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs.

Andrey V. Mardanov; Vitali A. Svetlitchnyi; Alexey V. Beletsky; Maria I. Prokofeva; Elizaveta A. Bonch-Osmolovskaya; Nikolai V. Ravin; K. G. Skryabin

ABSTRACT Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic crenarchaeon isolated from a terrestrial hot spring. We report the complete genome sequence of A. saccharovorans, which has permitted the prediction of genes for Embden-Meyerhof and Entner-Doudoroff pathways and genes associated with the oxidative tricarboxylic acid cycle. The electron transfer chain is branched with two sites of proton translocation and is linked to the reduction of elemental sulfur and thiosulfate. The genomic data suggest an important role of the order Acidilobales in thermoacidophilic ecosystems whereby its members can perform a complete oxidation of organic substrates, closing the anaerobic carbon cycle.


Journal of Bacteriology | 2011

Complete Genome Sequence of “Vulcanisaeta moutnovskia” Strain 768-28, a Novel Member of the Hyperthermophilic Crenarchaeal Genus Vulcanisaeta

Vadim M. Gumerov; Andrey V. Mardanov; Alexey V. Beletsky; Maria I. Prokofeva; Elizaveta A. Bonch-Osmolovskaya; Nikolai V. Ravin; K. G. Skryabin

Strain 768-28 was isolated from a hot spring in Kamchatka, Russia, and represents a novel member of the Vulcanisaeta genus. The complete genome sequence of this thermoacidophilic anaerobic crenarchaeon reveals genes for protein and carbohydrate-active enzymes, the Embden-Meyerhof and Entner-Doudoroff pathways for glucose metabolism, the tricarboxylic acid cycle, beta-oxidation of fatty acids, and sulfate reduction.


Extremophiles | 2011

Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka

Andrey V. Mardanov; Vadim M. Gumerov; Alexey V. Beletsky; Anna A. Perevalova; Gennady A. Karpov; Elizaveta A. Bonch-Osmolovskaya; Nikolai V. Ravin

The thermoacidophilic microbial community inhabiting the groundwater with pH 4.0 and temperature 50°C at the East Thermal Field of Uzon Caldera, Kamchatka, was examined using pyrosequencing of the V3 region of the 16S rRNA gene. Bacteria comprise about 30% of microorganisms and are represented primarily by aerobic lithoautotrophs using the energy sources of volcanic origin—thermoacidophilic methanotrophs of the phylum Verrucomicrobia and Acidithiobacillus spp. oxidising metals and reduced sulfur compounds. More than 70% of microbial population in this habitat were represented by archaea, in majority affiliated with “uncultured” lineages. The most numerous group (39% of all archaea) represented a novel division in the phylum Euryarchaeota related to the order Thermoplasmatales. Another abundant group (33% of all archaea) was related to MCG1 lineage of the phylum Crenarchaeota, originally detected in the Yellowstone hot spring as the environmental clone pJP89. The organisms belonging to these two groups are widely spread in hydrothermal environments worldwide. These data indicate an important environmental role of these two archaeal groups and should stimulate the investigation of their metabolism by cultivation or metagenomic approaches.

Collaboration


Dive into the Andrey V. Mardanov's collaboration.

Top Co-Authors

Avatar

Alexey V. Beletsky

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nikolai V. Ravin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

N. V. Ravin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

K. G. Skryabin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vitaly V. Kadnikov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim M. Gumerov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vladimir O. Popov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge