Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. V. Ravin is active.

Publication


Featured researches published by N. V. Ravin.


Environmental Microbiology | 2013

Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae

Olga A. Podosokorskaya; Vitaly V. Kadnikov; Sergey Gavrilov; Andrey V. Mardanov; Alexander Y. Merkel; Olga V. Karnachuk; N. V. Ravin; Elizaveta A. Bonch-Osmolovskaya; Ilya V. Kublanov

A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically.


FEBS Letters | 2006

Role of the leader sequence in tobacco pectin methylesterase secretion

Yuri L. Dorokhov; Eugene V. Skurat; Olga Y. Frolova; Tatjana V. Gasanova; P.A. Ivanov; N. V. Ravin; K. G. Skryabin; Kristiina Mäkinen; Viktor Klimyuk; Yuri Gleba; J.G. Atabekov

We report that unprocessed tobacco pectin methylesterase (PME) contains N‐terminal pro‐sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of pro‐sequence fused to GFP were cloned into binary vectors and agroinjected in Nicotiana benthamiana leaves. The PME pro‐sequence delivered GFP to the cell wall (CW). We showed that a transient binding of PME TM domain to endoplasmic reticulum membranes occurs upon its transport to CW. The CW targeting was abolished by various deletions in the TM domain, i.e., anchor domain was essential for secretion of GFP to CW. By contrast, even entire deletion of the spacer segment had no influence on GFP targeting.


FEBS Letters | 2006

A novel function for a ubiquitous plant enzyme pectin methylesterase: The enhancer of RNA silencing

Yuri L. Dorokhov; Olga Y. Frolova; Eugene V. Skurat; P.A. Ivanov; Tatjana V. Gasanova; Anna Sheveleva; N. V. Ravin; Kristiina Mäkinen; Victor Klimyuk; K. G. Skryabin; Yuri Gleba; J.G. Atabekov

Co‐agroinjection of Nicotiana benthamiana leaves with the pectin methylesterase (proPME) gene and the TMV:GFP vector resulted in a stimulation of virus‐induced RNA silencing (inhibition of GFP production, virus RNA degradation, stimulation of siRNAs production). Conversely, co‐expression of TMV:GFP with either antisense PME construct or with enzymatically inactive proPME restored synthesis of viral RNA. Furthermore, expression of proPME enhanced the GFP transgene‐induced gene silencing accompanied by relocation of the DCL1 protein from nucleus to the cytoplasm and activation of siRNAs and miRNAs production. It was hypothesized that DCL1 relocated to the cytoplasm may use as substrates both miRNA precursor and viral RNA. The capacity for enhancing the RNA silencing is a novel function for the polyfunctional PME.


Biochemistry | 2012

Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein

N. V. Ravin; Roman Y. Kotlyarov; E. S. Mardanova; Victor V. Kuprianov; A. I. Migunov; Ludmila Stepanova; Ludmila M. Tsybalova; Oleg I. Kiselev; K. G. Skryabin

Conventional influenza vaccines are based on a virus obtained in chicken embryos or its components. The high variability of the surface proteins of influenza virus, hemagglutinin and neuraminidase, requires strain-specific vaccines matching the antigenic specificity of newly emerging virus strains to be developed. A recombinant vaccine based on a highly conservative influenza virus protein M2 fused to a nanosized carrier particle can be an attractive alternative to traditional vaccines. We have constructed a recombinant viral vector based on potato X virus that provides for expression in the Nicotiana benthamiana plants of a hybrid protein M2eHBc consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen (HBc). This vector was introduced into plant cells by infiltrating leaves with agrobacteria carrying the viral vector. The hybrid protein M2eHBc was synthesized in the infected N. benthamiana plants in an amount reaching 1–2% of the total soluble protein and formed virus-like particles with the M2e peptide presented on the surface. Methods of isolation and purification of M2eHBc particles from plant producers were elaborated. Experiments on mice have shown a high immunogenicity of the plant-produced M2eHBc particles and their protective effect against lethal influenza challenge. The developed transient expression system can be used for production of M2e-based candidate influenza vaccine in plants.


Microbiology | 2011

Molecular analysis of microbial diversity in the Zavarzin Spring, Uzon Caldera, Kamchatka

Vadim M. Gumerov; Andrey V. Mardanov; Alexey V. Beletsky; Elizaveta A. Bonch-Osmolovskaya; N. V. Ravin

The Zavarzin spring is situated in the caldera of the Uzon volcano, Kamchatka, and is characterized by a temperature of about 60°C, neutral pH, and high concentration of sulfur. The bottom of the spring is covered with a cyanobacterial mat. The structure of the microbial community of the water from the Zavarzin spring was qualitatively and quantitatively characterized by pyrosequencing of the V3 variable region of the 16S rRNA gene, which yielded 37 654 independent sequences. The microbial community includes about 900 bacterial and 90 archaeal genera. Bacteria comprised 95% of the microorganisms and archaea less than 5%. The largest part (32.3%) of the community was constituted by the chemolithoautotrophic bacteria Aquificae from the genera Sulfurihydrogenibium and Thermosulfidibacter. Among autotrophic microorganisms, members of Thermodesulfobacteria (7.3%), the gammaproteobacteria Thiofaba (7.6%), the deltaproteobacteria Desulfurella (2.6%), and the betaproteobacteria Thiomonas (0.6%) were also identified. Heterotrophic bacteria were represented by Calditerrivibrio (12.1%), Thermotogae (6.3%), the betaproteobacteria Tepidimonas (6.0%), Deinococcus-Thermus (4.4%), Caldiserica (1.7%), and Dictyoglomi (1.6%). About 1.9% of microorganisms belonged to the BRC1 phylum, which does not include cultured members, and 0.2% of bacteria formed a new phylogenetic branch of the phylum level, representatives of which have been found only in the Zavarzin spring. Members of all four archaeal phyla were identified: Euryarchaeota (42% of archaeal sequences), Crenarchaeota (50%), Korarchaeota (7.5%), and Nanoarchaeota (0.5%). Thus, in the Zavarzin spring, apart from photosynthesis carried out by the cyanobacterial mat, which covers the bottom, chemolithoautotrophic production of organic matter can occur. In aerobic conditions, it proceeds at the expense of the oxidation of sulfur and its reduced compounds, and in anaerobic conditions, at the expense of the oxidation of hydrogen with sulfur and sulfates as electron acceptors. The organic matter formed by autotrophic bacteria may be utilized by various organotrophic microorganisms, including both fermentative bacteria and organisms that carry out anaerobic respiration with sulfur and nitrate as electron acceptors.


BioTechniques | 2010

A new technique for obtaining whole pathogen transcriptomes from infected host tissues

Tatyana L. Azhikina; Timofey Skvortsov; Tatyana V. Radaeva; Andrey V. Mardanov; N. V. Ravin; Alexander S. Apt; E. D. Sverdlov

We propose a novel experimental approach based on coincidence cloning for analyzing sequences of bacterial intracellular pathogens specifically transcribed in affected tissues. Co-denaturation and co-renaturation of excess bacterial genomic DNA with the cDNA prepared on total RNA of the infected tissue allows one to select the bacterial fraction of the cDNA sample. We used this technique for preparing and characterizing the Mycobacterium tuberculosis cDNA pool, representing the transcriptome of infected mouse lungs in the chronic phase of infection. A cDNA pool enriched in fragments of mycobacterial cDNA was analyzed by the high-throughput 454 sequencing procedure. We demonstrated that its composition corresponded to what can be expected in the chronic phase of infection and, after the adaptation of M. tuberculosis to the host immune system, was characterized by an active lipid metabolism and switched from aerobic to anaerobic respiration. The technique is universal and requires no prior knowledge of the pathogen genome sequence. Pools of transcribed sequences obtained by this technique retain the main characteristics of the genome-wide gene transcription pattern within infected tissue, and can be used for in vivo analysis of gene expression of a wide spectrum of infection agents, such as viruses, bacteria, and protista.


Molecular Biology | 2007

The 5'-Untranslated Region of the Maize Alcohol Dehydrogenase Gene Provides Efficient Translation of mRNA in Plants under Stress Conditions

E. S. Mardanova; Ludmila A. Zamchuk; N. V. Ravin

The reduced level of expression of most cell proteins under stress conditions is determined by the low efficiency of cap-dependent translation of corresponding mRNAs. The maize gene encoding alcohol dehydrogenase, adh1, is a gene whose mRNA is efficiently translated in hypoxia. The reporter gene assay showed that the leader sequence of the adh1 mRNA provided for efficient translation of the reporter gfp gene in Nicotiana benthamiana cells in hypoxia or heat shock. The presence of this sequence in the 5′-UTR of mRNA did not change the level of expression under aerobic conditions, but the levels of gfp expression in hypoxia or heat shock were reduced five-to tenfold in the absence of this leader and remained unaffected when the adh leader sequence was present in the 5′-UTR. The adh1 leader sequence did not change the mRNA stability nor exhibited a promoter activity. Thus, the adh leader sequence acted as a translational enhancer, providing for efficient mRNA translation in plant cells under stress conditions. Introduction of this sequence into standard expression cassettes was proposed for the development of new systems to efficiently express the target proteins in plants under stress conditions.


Biochemistry | 2011

Foot and mouth disease virus polyepitope protein produced in bacteria and plants induces protective immunity in guinea pigs

E. P. Andrianova; S. R. Krementsugskaia; N. N. Lugovskaia; T. K. Mayorova; V. V. Borisov; El'darov Ma; N. V. Ravin; A. S. Folimonov; K. G. Skryabin

The goal of this project was to develop an alternative foot and mouth disease (FMD) vaccine candidate based on a recombinant protein consisting of efficient viral epitopes. A recombinant gene was designed that encodes B-cell epitopes of proteins VP1 and VP4 and T-cell epitopes of proteins 2C and 3D. The polyepitope protein (H-PE) was produced in E. coli bacteria or in N. benthamiana plants using a phytovirus expression system. The methods of extraction and purification of H-PE proteins from bacteria and plants were developed. Immunization of guinea pigs with the purified H-PE proteins induced an efficient immune response against foot and mouth disease virus (FMDV) serotype O/Taiwan/99 and protection against the disease. The polyepitope protein H-PE can be used as a basis for developing a new recombinant vaccine against FMD.


Doklady Biological Sciences | 2006

A study of the effect of expression of the gene encoding the membrane H+-pyrophosphatase of Rhodospirillum rubrum on salt resistance of transgenic tobacco plants

E. V. D’yakova; A. L. Rakitin; A. M. Kamionskaya; A. A. Baikov; R. Lahti; N. V. Ravin; K. G. Skryabin

Attempts to increase the salt resistance of plants by stimulating Na + release from the cytoplasm have been made only recently. Active transport of ions is governed by the H + concentration gradient, which is created by proton pumps, and proceeds via subsequent ion exchange (e.g., by the mechanism of H + /Na + antiporter). There are three types of protein pumps in plants that create the electrochemical potential gradient of H +


Microbiology | 2013

Composition of the Microbial Communities of Bituminous Constructions at Natural Oil Seeps at the Bottom of Lake Baikal

Vitaly V. Kadnikov; A. V. Lomakina; A. V. Likhoshvai; A. G. Gorshkov; Tatiana V. Pogodaeva; Alexey V. Beletsky; Andrey V. Mardanov; T. I. Zemskaya; N. V. Ravin

Microbial communities of two bituminous constructions at the bottom of Lake Baikal in the region of natural oil seeps at a depth of 900 m have been investigated. Construction 8 contained biodegraded hydrocarbons, and construction 3, through which oil seeped, contained material that experienced biodegradation to a lesser degree. The composition of the microbial communities was studied by means of pyrosequencing of 16S rRNA gene fragments. Most of the bacterial 16S rRNA gene sequences identified in both bituminous constructions were attributed to proteobacteria, along with which Actinobacteria, Acidobacteria, Bacteroidetes, and TM7 were revealed. About 40% of the bacterial sequences in bituminous construction 3 belonged to representatives of uncultured groups within the classes Alphaproteobacteria and Betaproteobacteria and the phylum Bacteroidetes. The 16S rRNA gene sequences of archaea belonged to aceticlastic and hydrogenotrophic methanogens of the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales. The 16S rRNA genes of various groups of bacteria carrying out aerobic biodegradation of aromatic compounds and n-alkanes were found; their compositions differed between the constructions. Neither known groups of denitrifying betaproteobacteria nor known groups of sulfate-reducing deltaproteobacteria capable of carrying out anaerobic degradation of n-alkanes were found, which agrees with the low content of nitrate and sulfate in the water. In the anaerobic zone of bituminous constructions, the processes of biodegradation of hydrocarbons are probably carried out in the absence of alternative electron acceptors by the syntrophic community, including deltaproteobacteria of the genus Syntrophus and methanogenic archaea.

Collaboration


Dive into the N. V. Ravin's collaboration.

Top Co-Authors

Avatar

Andrey V. Mardanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

K. G. Skryabin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexey V. Beletsky

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. S. Mardanova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vitaly V. Kadnikov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vadim M. Gumerov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Vladimir O. Popov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Z. Kochieva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge