Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrzej Kochanowski is active.

Publication


Featured researches published by Andrzej Kochanowski.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals

P. Moskal; Natalia Zoń; T. Bednarski; P. Białas; E. Czerwiński; A. Gajos; D. Kamińska; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; W. Krzemien; E. Kubicz; Sz. Niedźwiecki; M. Palka; L. Raczyński; Z. Rudy; Oleksandr Rundel; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; W. Wiślicki; M. Zieliński

A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multidimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22 Na


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2014

Test of a single module of the J-PET scanner based on plastic scintillators

P. Moskal; Sz. Niedźwiecki; T. Bednarski; E. Czerwiński; Ł. Kapłon; E. Kubicz; Ines Moskal; M. Pawlik-Niedźwiecka; Neha Sharma; M. Silarski; M. Zieliński; Natalia Zoń; P. Białas; A. Gajos; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; W. Krzemien; Marcin Molenda; M. Palka; L. Raczyński; Z. Rudy; P. Salabura; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; W. Wiślicki

A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5 � 19 � 300 mm 3 ) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68 Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σðEÞ=E � 0:044= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi EðMeVÞ p


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2014

Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography

L. Raczyński; P. Moskal; P. Kowalski; W. Wiślicki; T. Bednarski; P. Białas; E. Czerwiński; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; T. Kozik; W. Krzemien; E. Kubicz; Marcin Molenda; Ines Moskal; Sz. Niedźwiecki; M. Palka; M. Pawlik-Niedźwiecka; Z. Rudy; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; M. Zieliński; Natalia Zoń

Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511 keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps ( σ).


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument

L. Raczyński; P. Moskal; P. Kowalski; W. Wiślicki; T. Bednarski; P. Białas; E. Czerwiński; A. Gajos; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; T. Kozik; W. Krzemien; E. Kubicz; Sz. Niedźwiecki; M. Palka; Z. Rudy; Oleksandr Rundel; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; M. Zieliński; Natalia Zoń

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The discussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sampling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iterative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.


Bio-Algorithms and Med-Systems | 2014

A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET)

M. Palka; P. Moskal; T. Bednarski; P. Białas; E. Czerwiński; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; Wojciech Krzemień; Marcin Molenda; Szymon Niedźwiecki; Monika Pawlik; Lech Razyński; Z. Rudy; P. Salabura; Neha Gupta-Sharma; M. Silarski; A. Słomski; Jerzy Smyrski; A. Strzelecki; W. Wiślicki; M. Zieliński; Natalia Zoń

Abstract This article presents an application of a novel technique for precise measurements of time and charge based solely on a field programmable gate array (FPGA) device for positron emission tomography (PET). The described approach simplifies electronic circuits, reduces the power consumption, lowers costs, merges front-end electronics with digital electronics, and also makes more compact final design. Furthermore, it allows to measure time when analog signals cross a reference voltage at different threshold levels with a very high precision of ~15 ps (rms) and thus enables sampling of signals in a voltage domain.


Acta Physica Polonica A | 2015

Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package

P. Kowalski; P. Moskal; W. Wiślicki; L. Raczyński; T. Bednarski; P. Białas; Jarosław Bułka; E. Czerwiński; A. Gajos; A. Gruntowski; D. Kamińska; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Janusz Kowal; T. Kozik; W. Krzemien; E. Kubicz; Sz. Niedźwiecki; M. Palka; Z. Rudy; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; Ireneusz Wochlik; M. Zieliński

Novel Positron Emission Tomography system, based on plastic scintillators, is developed by the J-PET collaboration. In order to optimize geometrical conguration of built device, advanced computer simulations are performed. Detailed study is presented of background given by accidental coincidences and multiple scattering of gamma quanta.


Acta Physica Polonica A | 2015

A pilot study of the novel J-PET plastic scintillator with 2-(4-styrylphenyl)benzoxazole as a wavelength shifter

A. Wieczorek; P. Moskal; Sz. Niedźwiecki; T. Bednarski; P. Białas; E. Czerwiński; Andrzej Danel; A. Gajos; A. Gruntowski; D. Kamińska; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; W. Krzemien; E. Kubicz; Marcin Molenda; M. Palka; L. Raczyński; Z. Rudy; Oleksandr Rundel; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; Tomasz Uchacz

For the rst time a molecule of 2-(4-styrylphenyl)benzoxazole containing benzoxazole and stilbene groups is applied as a scintillator dopant acting as a wavelength shifter. In this article a light yield of the plastic scintillator, prepared from styrene doped with 2 wt% of 2,5-diphenylbenzoxazole and 0.03 wt% of 2-(4-styrylphenyl)benzoxazole, is determined to be as large as 60% 2% of the anthracene light output. There is a potential to improve this value in the future by the optimization of the additives concentrations.


Acta Physica Polonica A | 2015

Analysis framework for the J-PET scanner

W. Krzemien; A. Gajos; A. Gruntowski; Karol Stoła; Damian Trybek; T. Bednarski; P. Białas; E. Czerwiński; D. Kamińska; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; E. Kubicz; P. Moskal; Sz. Niedźwiecki; M. Palka; L. Raczyński; Z. Rudy; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; W. Wiślicki; M. Zieliński

J-PET analysis framework is a flexible, lightweight, ROOT-based software package which provides the tools to develop reconstruction and calibration procedures for PET tomography. In this article we present the implementation of the full data-processing chain in the J-PET framework which is used for the data analysis of the J-PET tomography scanner. The Framework incorporates automated handling of PET setup parameters’ database as well as high level tools for building data reconstruction procedures. Each of these components is briefly discussed.


Bio-Algorithms and Med-Systems | 2014

Trigger-less and reconfigurable data acquisition system for positron emission tomography

G. Korcyl; P. Moskal; T. Bednarski; P. Białas; E. Czerwiński; Ł. Kapłon; Andrzej Kochanowski; Jakub Kowal; P. Kowalski; T. Kozik; Wojciech Krzemień; Marcin Molenda; Szymon Niedźwiecki; M. Palka; Monika Pawlik; L. Raczyński; Z. Rudy; P. Salabura; Neha Gupta-Sharma; M. Silarski; A. Słomski; Jerzy Smyrski; A. Strzelecki; W. Wiślicki; M. Zieliński; Natalia Zoń

Abstract This article is focused on data acquisition system (DAQ) designed especially to be used in positron emission tomography (PET) or single-photon emission computed tomography. The system allows for continuous registration of analog signals during measurement. It has been designed to optimize registration and processing of the information carried by signals from the detector system in PET scanner. The processing does not require any rejection of data with a trigger system. The proposed system possesses also an ability to implement various data analysis algorithms that can be performed in real time during data collection.


Bio-Algorithms and Med-Systems | 2014

Computing support for advanced medical data analysis and imaging

W. Wiślicki; T. Bednarski; P. Białas; E. Czerwiński; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; Wojciech Krzemień; Marcin Molenda; P. Moskal; Szymon Niedźwiecki; M. Palka; M. Pawlik-Niedźwiecka; L. Raczyński; Z. Rudy; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; Jerzy Smyrski; A. Strzelecki; A. Wieczorek; M. Zieliński; Natalia Zoń

Abstract We discuss computing issues for data analysis and image reconstruction of positron emission tomography based on time-of-flight medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on grid and cloud concepts for distributed processing is proposed and critically discussed.

Collaboration


Dive into the Andrzej Kochanowski's collaboration.

Top Co-Authors

Avatar

G. Korcyl

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Z. Rudy

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

T. Bednarski

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Palka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

M. Silarski

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

P. Białas

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

P. Moskal

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

A. Słomski

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

P. Salabura

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge