Andrzej Stasiak
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrzej Stasiak.
Molecular Cell | 2001
Adelina A. Davies; Jean-Yves Masson; Michael J. McIlwraith; Alicja Z. Stasiak; Andrzej Stasiak; Ashok R. Venkitaraman; Stephen C. West
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.
The EMBO Journal | 1994
Fiona E. Benson; Andrzej Stasiak; Stephen C. West
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single‐ and double‐stranded DNA and exhibits DNA‐dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non‐hydrolysable analogue ATP gamma S. Complexes formed with single‐ and double‐stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single‐stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.
Nature | 1999
Eric Van Dyck; Alicja Z. Stasiak; Andrzej Stasiak; Stephen C. West
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. Amodel for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Cell | 2002
Laurent Aussel; François-Xavier Barre; Mira Aroyo; Andrzej Stasiak; Alicja Z. Stasiak; David J. Sherratt
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.
Molecular Cell | 2008
Kerstin Gari; Chantal Décaillet; Alicja Z. Stasiak; Andrzej Stasiak; Angelos Constantinou
Fanconi anemia (FA) is a genetically heterogeneous cancer-prone disorder associated with chromosomal instability and cellular hypersensitivity to DNA crosslinking agents. The FA pathway is suspected to play a crucial role in the cellular response to DNA replication stress. At a molecular level, however, the function of most of the FA proteins is unknown. FANCM displays DNA-dependent ATPase activity and promotes the dissociation of DNA triplexes, but the physiological significance of this activity remains elusive. Here we show that purified FANCM binds to Holliday junctions and replication forks with high specificity and promotes migration of their junction point in an ATPase-dependent manner. Furthermore, we provide evidence that FANCM can dissociate large recombination intermediates, via branch migration of Holliday junctions through 2.6 kb of DNA. Our data suggest a direct role for FANCM in DNA processing, consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks.
Journal of Molecular Biology | 1982
E. Di Capua; Andreas Engel; Andrzej Stasiak; Th. Koller
Stable complexes were formed between the recA protein of Escherichia coli and duplex DNA in the presence of adenosine 5′-γ-thiotriphosphate. From the known number of base-pairs of the plasmid used, from the appearance of the complexes in the electron microscope after platinum shadowing and negative staining and from mass determinations in situ by scanning transmission electron microscopy, we deduce a structure in which 18.6 base-pairs and 6.4 recA monomers contribute to one turn of a right-handed helix with a pitch of 9.6 nm and a width of 11 nm. The results suggest an intercalative mode of binding, which partially unwinds the DNA.
Current Biology | 2000
Alicja Z. Stasiak; Eric Larquet; Andrzej Stasiak; Shirley A. Müller; Andreas Engel; Eric Van Dyck; Stephen C. West; Edward H. Egelman
The RAD52 epistasis group was identified in yeast as a group of genes required to repair DNA damaged by ionizing radiation [1]. Genetic evidence indicates that Rad52 functions in Rad51-dependent and Rad51-independent recombination pathways [2] [3] [4]. Consistent with this, purified yeast and human Rad52 proteins have been shown to promote single-strand DNA annealing [5] [6] [7] and to stimulate Rad51-mediated homologous pairing [8] [9] [10] [11]. Electron microscopic examinations of the yeast [12] and human [13] Rad52 proteins have revealed their assembly into ring-like structures in vitro. Using both conventional transmission electron microscopy and scanning transmission electron microscopy (STEM), we found that the human Rad52 protein forms heptameric rings. A three-dimensional (3D) reconstruction revealed that the heptamer has a large central channel. Like the hexameric helicases such as Escherichia coli DnaB [14] [15], bacteriophage T7 gp4b [16] [17], simian virus 40 (SV40) large T antigen [18] and papilloma virus E1 [19], the Rad52 rings show a distinctly chiral arrangement of subunits. Thus, the structures formed by the hexameric helicases may be a more general property of other proteins involved in DNA metabolism, including those, such as Rad52, that do not bind and hydrolyze ATP.
Nature Structural & Molecular Biology | 2010
Rémi Buisson; Anne-Marie Dion-Côté; Yan Coulombe; Hélène Launay; Hong Cai; Alicja Z. Stasiak; Andrzej Stasiak; Bing Xia; Jean-Yves Masson
Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2′s tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2′s function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2′s function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.
Molecular Cell | 2010
Zhijiang Yan; Mathieu Delannoy; Chen Ling; Danielle L. Daee; Fekret Osman; Parameswary A. Muniandy; Xi Shen; Anneke B. Oostra; Hansen Du; Jurgen Steltenpool; Ti Lin; Beatrice Schuster; Chantal Décaillet; Andrzej Stasiak; Alicja Z. Stasiak; Stacie Stone; Maureen E. Hoatlin; Detlev Schindler; Christopher L. Woodcock; Hans Joenje; Ranjan Sen; Johan P. de Winter; Lei Li; Michael M. Seidman; Matthew C. Whitby; Kyungjae Myung; Angelos Constantinou; Weidong Wang
FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.
Journal of Molecular Biology | 1981
Andrzej Stasiak; E. Di Capua; Th. Koller
Abstract recA protein, which is essential for the recombination process in Escherichia coli , was incubated in the presence of 5′-γ-thiotriphosphate with circular plasmid pBR β G containing small single-stranded gaps. Stable complexes were formed which appear in the electron microscope as fibres with a diameter about five times that of naked DNA. Complex formation appears to be a co-operative process whereby the average rise per base-pair with respect to the fibre axis increases from 3·39 ± 0·08 A to 5·20 ± 0·18 A. The elongation of DNA by about 50% is compatible with an unwinding of the double helix and an intercalating mode of binding of recA and/or 5′-γ-thiotriphosphate to DNA.