Andy G. Lynch
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andy G. Lynch.
Nature | 2012
Christina Curtis; Sohrab P. Shah; Suet-Feung Chin; Gulisa Turashvili; Oscar M. Rueda; Mark J. Dunning; Doug Speed; Andy G. Lynch; Shamith Samarajiwa; Yinyin Yuan; Stefan Gräf; Gavin Ha; Gholamreza Haffari; Ali Bashashati; Roslin Russell; Steven McKinney; Anita Langerød; Andrew T. Green; Elena Provenzano; G.C. Wishart; Sarah Pinder; Peter H. Watson; Florian Markowetz; Leigh Murphy; Ian O. Ellis; Arnie Purushotham; Anne Lise Børresen-Dale; James D. Brenton; Simon Tavaré; Carlos Caldas
The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ∼40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.
The Journal of Pathology | 2010
Ahmed Ashour Ahmed; Dariush Etemadmoghadam; Jillian Temple; Andy G. Lynch; Mohamed Riad; Raghwa Sharma; Colin J.R. Stewart; Sian Fereday; Carlos Caldas; Anna deFazio; David Bowtell; James D. Brenton
Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High‐grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high‐grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2–11 and intron–exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation‐negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low‐grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression‐free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance. Copyright
The EMBO Journal | 2011
Charlie E. Massie; Andy G. Lynch; Antonio Ramos-Montoya; Joan Boren; Rory Stark; Ladan Fazli; Anne Warren; Helen E. Scott; Basetti Madhu; Naomi L. Sharma; Helene Bon; Vinny Zecchini; Donna-Michelle Smith; Gina M. DeNicola; Nik Mathews; Michelle Osborne; James Hadfield; Stewart MacArthur; Boris Adryan; Scott K. Lyons; Kevin M. Brindle; John R. Griffiths; Martin E. Gleave; Paul S. Rennie; David E. Neal; Ian G. Mills
The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin‐dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone‐dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.
EMBO Reports | 2007
Charlie E. Massie; Boris Adryan; Nuno L. Barbosa-Morais; Andy G. Lynch; Maxine Tran; David E. Neal; Ian G. Mills
The androgen receptor (AR) initiates important developmental and oncogenic transcriptional pathways. The AR is known to bind as a homodimer to 15‐base pair bipartite palindromic androgen‐response elements; however, few direct AR gene targets are known. To identify AR promoter targets, we used chromatin immunoprecipitation with on‐chip detection of genomic fragments. We identified 1,532 potential AR‐binding sites, including previously known AR gene targets. Many of the new AR target genes show altered expression in prostate cancer. Analysis of sequences underlying AR‐binding sites showed that more than 50% of AR‐binding sites did not contain the established 15 bp AR‐binding element. Unbiased sequence analysis showed 6‐bp motifs, which were significantly enriched and were bound directly by the AR in vitro. Binding sequences for the avian erythroblastosis virus E26 homologue (ETS) transcription factor family were also highly enriched, and we uncovered an interaction between the AR and ETS1 at a subset of AR promoter targets.
Nucleic Acids Research | 2010
Nuno L. Barbosa-Morais; Mark J. Dunning; Shamith A. Samarajiwa; Jeremy F. J. Darot; Matthew E. Ritchie; Andy G. Lynch; Simon Tavaré
Illumina BeadArrays are among the most popular and reliable platforms for gene expression profiling. However, little external scrutiny has been given to the design, selection and annotation of BeadArray probes, which is a fundamental issue in data quality and interpretation. Here we present a pipeline for the complete genomic and transcriptomic re-annotation of Illumina probe sequences, also applicable to other platforms, with its output available through a Web interface and incorporated into Bioconductor packages. We have identified several problems with the design of individual probes and we show the benefits of probe re-annotation on the analysis of BeadArray gene expression data sets. We discuss the importance of aspects such as probe coverage of individual transcripts, alternative messenger RNA splicing, single-nucleotide polymorphisms, repeat sequences, RNA degradation biases and probes targeting genomic regions with no known transcription. We conclude that many of the Illumina probes have unreliable original annotation and that our re-annotation allows analyses to focus on the good quality probes, which form the majority, and also to expand the scope of biological information that can be extracted.
Nature Genetics | 2015
Colin S. Cooper; Rosalind Eeles; David C. Wedge; Peter Van Loo; Gunes Gundem; Ludmil B. Alexandrov; Barbara Kremeyer; Adam Butler; Andy G. Lynch; Niedzica Camacho; Charlie E. Massie; Jonathan Kay; Hayley Luxton; Sandra Edwards; Zsofia Kote-Jarai; Nening Dennis; Sue Merson; Daniel Leongamornlert; Jorge Zamora; Cathy Corbishley; Sarah Thomas; Serena Nik-Zainal; Manasa Ramakrishna; Sarah O'Meara; Lucy Matthews; Jeremy Clark; Rachel Hurst; Richard Mithen; Robert G. Bristow; Paul C. Boutros
Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Nature Genetics | 2014
Jamie M.J. Weaver; Caryn S. Ross-Innes; Nicholas Shannon; Andy G. Lynch; Tim Forshew; Mariagnese Barbera; Muhammed Murtaza; Chin-Ann J. Ong; Pierre Lao-Sirieix; Mark J. Dunning; Laura Smith; M.L.R. Smith; Charlotte Anderson; Benilton Carvalho; Maria O'Donovan; Timothy J. Underwood; Andrew May; Nicola Grehan; Richard H. Hardwick; Jim Davies; Arusha Oloumi; Sam Aparicio; Carlos Caldas; Matthew Eldridge; Paul A.W. Edwards; Nitzan Rosenfeld; Simon Tavaré; Rebecca C. Fitzgerald
Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barretts esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barretts esophagus (NDBE; n = 66) and high-grade dysplasia (HGD; n = 43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barretts esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies.
Journal of Pain and Symptom Management | 2010
Sarah Galbraith; Petrea Fagan; Paul Perkins; Andy G. Lynch; Sara Booth
CONTEXT Dyspnea is a disabling distressing symptom that is common in advanced disease affecting millions of people worldwide. Current palliative strategies are partially effective in managing this symptom; facial cooling has been shown to reduce the sensation of breathlessness when induced in volunteers but has not been formally investigated in dyspnea associated with disease. OBJECTIVE The objective of this study was to investigate whether a handheld fan reduces the sensation of breathlessness in such patients, enhancing palliative approaches. METHODS The effectiveness of a handheld fan (blowing air across the nose and mouth) in reducing the sensation of breathlessness was assessed in patients with advanced disease. Fifty participants were randomized to use a handheld fan for five minutes directed to their face or leg first and then crossed over to the other treatment. The primary outcome measure was a decrease of greater than 1cm in breathlessness recorded on a 10 cm visual analog scale (VAS). RESULTS There was a significant difference in the VAS scores between the two treatments, with a reduction in breathlessness when the fan was directed to the face (P=0.003). CONCLUSION This study supports the hypothesis that a handheld fan directed to the face reduces the sensation of breathlessness. The fan was acceptable to participants: it is inexpensive, portable, enhances self-efficacy, and available internationally. It should be recommended as part of a palliative management strategy for reducing breathlessness associated with advanced disease.
Science | 2014
Jose M. C. Tubio; Yilong Li; Young Seok Ju; Inigo Martincorena; Susanna L. Cooke; Marta Tojo; Gunes Gundem; Christodoulos P Pipinikas; Jorge Zamora; Keiran Raine; Andy Menzies; P. Roman-Garcia; Anthony Fullam; Moritz Gerstung; Adam Shlien; Patrick Tarpey; Elli Papaemmanuil; Stian Knappskog; P. Van Loo; Manasa Ramakrishna; Helen Davies; John Marshall; David C. Wedge; J Teague; Adam Butler; Serena Nik-Zainal; Ludmil B. Alexandrov; Sam Behjati; Lucy R. Yates; Niccolo Bolli
Introduction The human genome is peppered with mobile repetitive elements called long interspersed nuclear element–1 (L1) retrotransposons. Propagating through RNA and cDNA intermediates, these molecular parasites copy and insert themselves throughout the genome, with potentially disruptive effects on neighboring genes or regulatory sequences. In the germ line, unique sequence downstream of L1 elements can also be retrotransposed if transcription continues beyond the repeat, a process known as 3′ transduction. There has been growing interest in retrotransposition and 3′ transduction as a possible source of somatic mutations during tumorigenesis. The activity of individual L1 elements fluctuates during tumor evolution. In a lung tumor, hundreds of 3′ transductions arose from a small number of active L1 source elements (colored circles on outer rim of circle). As the tumor evolved from the preinvasive common ancestor to invasive cancer, individual elements exhibited variable activity over time. Rationale To explore whether 3′ transductions are frequent in cancer, we developed a bioinformatic algorithm for identifying somatically acquired retrotranspositions in cancer genomes. We applied our algorithm to 290 cancer samples from 244 patients across 12 tumor types. The unique downstream sequence mobilized with 3′ transductions effectively fingerprints the L1 source element, providing insights into the activity of individual L1 loci across the genome. Results Across the 290 samples, we identified 2756 somatic L1 retrotranspositions. Tumors from 53% of patients had at least one such event, with colorectal and lung cancers being most frequently affected (93% and 75% of patients, respectively). Somatic 3′ transductions comprised 24% of events, half of which represented mobilizations of unique sequence alone, without any accompanying L1 sequence. Overall, 95% of 3′ transductions identified derived from only 72 germline L1 source elements, with as few as four loci accounting for 50% of events. In a given sample, the same source element could generate 50 or more somatic transductions, scattered extensively across the genome. About 5% of somatic transductions arose from L1 source elements that were themselves somatic retrotranspositions. In three of the cases in which we sequenced more than one sample from a patient’s tumor, we were able to place 3′ transductions on the phylogenetic tree. We found that the activity of individual source elements fluctuated during tumor evolution, with different subclones exhibiting much variability in which elements were “on” and which were “off.” The ability to identify the individual L1 source elements active in a given tumor enabled us to study the promoter methylation of those elements specifically. We found that 3′ transduction activity in a patient’s tumor was always associated with hypomethylation of that element. Overall, 2.3% of transductions distributed exons or entire genes to other sites in the genome, and many more mobilized deoxyribonuclease I (DNAse-I) hypersensitive sites or transcription factor binding sites identified by the ENCODE project. Occasionally, somatic L1 insertions inserted near coding sequence and redistributed these exons elsewhere in the genome. However, we found no general effects of retrotranspositions on transcription levels of genes at the insertion points and no evidence for aberrant RNA species resulting from somatically acquired transposable elements. Indeed, as with germline retrotranspositions, somatic insertions exhibited a strong enrichment in heterochromatic, gene-poor regions of the genome. Conclusion Somatic 3′ transduction occurs frequently in human tumors, and in some cases transduction events can scatter exons, genes, and regulatory elements widely across the genome. Dissemination of these sequences appears to be due to a small number of highly active L1 elements, whose activity can wax and wane during tumor evolution. The majority of the retrotransposition events are likely to be harmless “passenger” mutations. Hitchhiking through the tumor genome Retrotransposons are DNA repeat sequences that are constantly on the move. By poaching certain cellular enzymes, they copy and insert themselves at new sites in the genome. Sometimes they carry along adjacent DNA sequences, a process called 3′ transduction. Tubio et al. found that 3′ transduction is a common event in human tumors. Because this process can scatter genes and regulatory sequences across the genome, it may represent yet another mechanism by which tumor cells acquire new mutations that help them survive and grow. Science, this issue p. 10.1126/science.1251343 Tumor genomes are peppered with mobile repeat sequences that carry along adjacent DNA when they insert into new genomic sites. Long interspersed nuclear element–1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3′ transduction. Because 3′ transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3′ transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3′ transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3′ transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.
eLife | 2014
Young Seok Ju; Ludmil B. Alexandrov; Moritz Gerstung; Inigo Martincorena; Serena Nik-Zainal; Manasa Ramakrishna; Helen Davies; Elli Papaemmanuil; Gunes Gundem; Adam Shlien; Niccolo Bolli; Sam Behjati; Patrick Tarpey; Jyoti Nangalia; C E Massie; Adam Butler; J Teague; George S. Vassiliou; Anthony R. Green; M Q Du; Ashwin Unnikrishnan; John E. Pimanda; Bin Tean Teh; Nikhil C. Munshi; Mel Greaves; Paresh Vyas; Adel K. El-Naggar; Thomas Santarius; V P Collins; Richard Grundy
Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication. DOI: http://dx.doi.org/10.7554/eLife.02935.001