Ian G. Mills
Queen's University Belfast
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian G. Mills.
Nature | 2002
Marijn G. J. Ford; Ian G. Mills; Brian J. Peter; Yvonne Vallis; Gerrit J. K. Praefcke; Philip R. Evans; Harvey T. McMahon
Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P2 in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic α-helix in epsin is coupled to PtdIns(4,5)P2 binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.
Nature Genetics | 2011
Matthew L. Freedman; Alvaro N.A. Monteiro; Simon A. Gayther; Gerhard A. Coetzee; Angela Risch; Christoph Plass; Graham Casey; Mariella De Biasi; Christopher S. Carlson; David Duggan; Michael A. James; Pengyuan Liu; Jay W. Tichelaar; Haris G. Vikis; Ming You; Ian G. Mills
Genome wide association studies (GWAS) have identified more than 200 mostly new common low-penetrance susceptibility loci for cancers. The predicted risk associated with each locus is generally modest (with a per-allele odds ratio typically less than 2) and so, presumably, are the functional effects of individual genetic variants conferring disease susceptibility. Perhaps the greatest challenge in the ‘post-GWAS’ era is to understand the functional consequences of these loci. Biological insights can then be translated to clinical benefits, including reliable biomarkers and effective strategies for screening and disease prevention. The purpose of this article is to propose principles for the initial functional characterization of cancer risk loci, with a focus on non-coding variants, and to define ‘post-GWAS’ functional characterization. By December 2010, there were 1,212 published GWAS studies1 reporting significant (P < 5 × 10−8) associations for 210 traits (Table 1), and the Catalog of Published GWAS states that by March 2011, 812 publications reported 3,977 SNP associations1. This is likely a small fraction of the common susceptibility loci of low penetrance that will eventually be identified. Despite these successes in identifying risk loci, the causal variant and/or the molecular basis of risk etiology has been determined for only a small fraction of these associations2–4. Plausible candidate genes can be based on proximity to risk loci, but few have so far been defined in a more systematic manner (Supplementary Table 1). Table 1 The genomic context in which a variant is found can be used as preliminary functional analysis Increased investment in post-GWAS functional characterization of risk loci5 has now been advocated across diseases and for cardiovascular disease and diabetes6. For cancer biology, the complex interplay between genetics and the environment in many cancers poses a particularly exciting challenge for post-GWAS research. Here we suggest a systematic strategy for understanding how cancer-associated variants exert their effects. We mostly refer to SNPs throughout the paper, but we recognize that other types of common genetic (for example, copy number variants) or epigenetic variation may influence risk. Our understanding of the way in which a risk variant initiates disease pathogenesis progresses from statistical association between genetic variation and trait or disease variation to functionality and causality. The functional consequences of variants in protein-coding regions causing most monogenic disorders are more readily interpreted because we know the genetic code. For non-Mendelian or multifactorial traits, most of the common DNA variants have so far mapped to non-protein–coding regions2, where our understanding of functional consequences and causality is more rudimentary. Our hypothesis is that the trait-associated alleles exert their effects by influencing transcriptional output (such as transcript levels and splicing) through multiple mechanisms. We emphasize appropriate assays and models to test the functional effects of both SNPs and genes mapping to cancer predisposition loci. Although much of what is written is applicable to alleles discovered for any trait, the section on modeling gene effects will emphasize measuring cancer-related phenotypes. At some loci, multiple, independently associated risk alleles rather than single risk alleles may be functionally responsible for the occurrence of disease. Genotyping susceptibility loci (and their correlated variants) in multiple populations with different linkage disequilibrium (LD) structures may prove effective in substantially reducing the number of potentially causative variants (that is, the same causal variant may segregate in multiple populations), as shown for the FGFR2 locus in breast cancer7, but for most loci there will remain a set of potentially causative variants that cannot be separated at the statistical level from case-control genotype data. A susceptibility locus should be re-sequenced to ascertain all genetic variation, identifying candidate functional or causal variants and identifying candidate causal genes. Ideally, the identification of a causal SNP would be the next step to reveal the molecular mechanisms of risk modification. Practically, however, it is unclear what the criteria for causality should be, particularly in non-protein–coding regions. Thus, although we propose a framework set of analyses (Box 1), we acknowledge that the techniques and methods will continue to evolve with the field. Box 1 Strategies to progress from tag SNP to mechanism Target resequencing efforts using linkage disequilibrium (LD) structure. Use other populations to refine LD regions (for example African ancestry with shorter LD and more heterogeneity). Determine expression levels of nearby genes as a function of genotype at each locus (eQTL). Characterize gene regulatory regions by multiple empirical techniques bearing in mind that these are tissue and context specific. Combine regulatory regions with risk loci using coordinates from multiple reference genomes to capture all variation within the shorter regulatory regions that correlates with the tag SNP at each locus. Multiple experimental manipulations in model systems are needed to progressively implicate transcription units (genes) in mechanisms relevant to the associated loci: Knockouts of regulatory regions in animal (difficult and may be limited by functional redundancy, but new targeting methods in rat are promising) models followed by genome-wide expression analysis. Use chromatin association methods (3C, CHIA-PET) of regulatory regions to determine the identity of target genes (compare with eQTL data). Targeted gene perturbations in somatic cell models. Explore fully genome-wide eQTL and miRNA quantitative variation correlation in relevant tissues and cells. Explore epigenetic mechanisms in the context of genome-wide genetic polymorphism. Employ cell models and tissue reconstructions to evaluate mechanisms using gene perturbations and polymorphic variants. The human cancer cell xenograft has re-emerged as a minimal in vivo validation of these models. Above all, resist the temptation to equate any partial functional evidence as sufficient. Published claims of functional relevance should be fully evaluated using the steps detailed above.
The EMBO Journal | 2011
Charlie E. Massie; Andy G. Lynch; Antonio Ramos-Montoya; Joan Boren; Rory Stark; Ladan Fazli; Anne Warren; Helen E. Scott; Basetti Madhu; Naomi L. Sharma; Helene Bon; Vinny Zecchini; Donna-Michelle Smith; Gina M. DeNicola; Nik Mathews; Michelle Osborne; James Hadfield; Stewart MacArthur; Boris Adryan; Scott K. Lyons; Kevin M. Brindle; John R. Griffiths; Martin E. Gleave; Paul S. Rennie; David E. Neal; Ian G. Mills
The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin‐dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone‐dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.
EMBO Reports | 2007
Charlie E. Massie; Boris Adryan; Nuno L. Barbosa-Morais; Andy G. Lynch; Maxine Tran; David E. Neal; Ian G. Mills
The androgen receptor (AR) initiates important developmental and oncogenic transcriptional pathways. The AR is known to bind as a homodimer to 15‐base pair bipartite palindromic androgen‐response elements; however, few direct AR gene targets are known. To identify AR promoter targets, we used chromatin immunoprecipitation with on‐chip detection of genomic fragments. We identified 1,532 potential AR‐binding sites, including previously known AR gene targets. Many of the new AR target genes show altered expression in prostate cancer. Analysis of sequences underlying AR‐binding sites showed that more than 50% of AR‐binding sites did not contain the established 15 bp AR‐binding element. Unbiased sequence analysis showed 6‐bp motifs, which were significantly enriched and were bound directly by the AR in vitro. Binding sequences for the avian erythroblastosis virus E26 homologue (ETS) transcription factor family were also highly enriched, and we uncovered an interaction between the AR and ETS1 at a subset of AR promoter targets.
Current Biology | 1998
Ian G. Mills; Arwyn Tomos Jones; Michael J. Clague
In mammalian cells, fusion between early endocytic vesicles has been shown to require the ubiquitous intracellular fusion factors N-ethylmaleimide-sensitive factor (NSF) and alpha-SNAP, as well as a factor specific for early endosomes, the small GTPase Rab5 [1-3]. We have previously demonstrated an additional requirement for phosphatidylinositol 3-kinase (PI 3-kinase) activity [4]. The membrane association of early endosomal antigen 1 (EEA1), a specific marker of early endosomes [5,6], has recently been shown to be similarly dependent on PI 3-kinase activity [7], and we therefore postulated that it might be involved in endosome fusion. Here, we present evidence that EEA1 has an important role in determining the efficiency of endosome fusion in vitro. Both the carboxy-terminal domain of EEA1 (residues 1098-1411) and specific antibodies against EEA1 inhibited endosome fusion when included in an in vitro assay. Furthermore, depletion of EEA1, both from the membrane fraction used in the assay by washing with salt and from the cytosol using an EEA1-specific antibody, resulted in inhibition of endosome fusion. The involvement of EEA1 in endosome fusion accounts for the sensitivity of the endosome fusion assay to inhibitors of PI 3-kinase.
Cancer Cell | 2013
Naomi L. Sharma; Charlie E. Massie; Antonio Ramos-Montoya; Vincent Zecchini; Helen E. Scott; Alastair D. Lamb; Stewart MacArthur; Rory Stark; Anne Warren; Ian G. Mills; David E. Neal
The androgen receptor (AR) regulates prostate cell growth in man, and prostate cancer is the commonest cancer in men in the UK. We present a comprehensive analysis of AR binding sites in human prostate cancer tissues, including castrate-resistant prostate cancer (CRPC). We identified thousands of AR binding sites in CRPC tissue, most of which were not identified in PC cell lines. Many adjacent genes showed AR regulation in xenografts but not in cultured LNCaPs, demonstrating an in-vivo-restricted set of AR-regulated genes. Functional studies support a model of altered signaling in vivo that directs AR binding. We identified a 16 gene signature that outperformed a larger in-vitro-derived signature in clinical data sets, showing the importance of persistent AR signaling in CRPC.
Developmental Cell | 2004
Agnès Saint-Pol; Belén Yélamos; Mohamed Amessou; Ian G. Mills; Marc Dugast; Danièle Tenza; Peter Schu; Claude Antony; Harvey T. McMahon; Christophe Lamaze; Ludger Johannes
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.
PLOS Biology | 2006
Eva M. Schmid; Marijn G. J. Ford; Anne Burtey; Gerrit J. K. Praefcke; Sew-Yeu Peak-Chew; Ian G. Mills; Alexandre Benmerah; Harvey T. McMahon
Adaptor protein complex 2 α and β-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of β-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the β-appendage (the “top” and “side” sites) that bind motifs distinct from those previously identified on the α-appendage. We solved the structure of the β-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor β-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the β-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability (“matricity”). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as β-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors.
Journal of Clinical Investigation | 2012
Lori S. Hart; John T. Cunningham; Tatini Datta; Souvik Dey; Feven Tameire; Stacey L. Lehman; Bo Qiu; Haiyan Zhang; George J. Cerniglia; Meixia Bi; Yan Li; Yan Gao; Huayi Liu; Changhong Li; Amit Maity; Andrei Thomas-Tikhonenko; Alexander E. Perl; Albert C. Koong; Serge Y. Fuchs; J. Alan Diehl; Ian G. Mills; Davide Ruggero; Constantinos Koumenis
The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.
The EMBO Journal | 2011
Jessica L. L. Robinson; Stewart MacArthur; Caryn S. Ross-Innes; Wayne D. Tilley; David E. Neal; Ian G. Mills; Jason S. Carroll
Breast cancer is a heterogeneous disease and several distinct subtypes exist based on differential gene expression patterns. Molecular apocrine tumours were recently identified as an additional subgroup, characterised as oestrogen receptor negative and androgen receptor positive (ER− AR+), but with an expression profile resembling ER+ luminal breast cancer. One possible explanation for the apparent incongruity is that ER gene expression programmes could be recapitulated by AR. Using a cell line model of ER− AR+ molecular apocrine tumours (termed MDA‐MB‐453 cells), we map global AR binding events and find a binding profile that is similar to ER binding in breast cancer cells. We find that AR binding is a near‐perfect subset of FoxA1 binding regions, a level of concordance never previously seen with a nuclear receptor. AR functionality is dependent on FoxA1, since silencing of FoxA1 inhibits AR binding, expression of the majority of the molecular apocrine gene signature and growth cell growth. These findings show that AR binds and regulates ER cis‐regulatory elements in molecular apocrine tumours, resulting in a transcriptional programme reminiscent of ER‐mediated transcription in luminal breast cancers.