Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anett Karl is active.

Publication


Featured researches published by Anett Karl.


Investigative Ophthalmology & Visual Science | 2009

Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat.

Matus Rehak; Margrit Hollborn; Ianors Iandiev; Thomas Pannicke; Anett Karl; Antje Wurm; Leon Kohen; Andreas Reichenbach; Peter Wiedemann; Andreas Bringmann

PURPOSE In a rat model of branch retinal vein occlusion (BRVO), changes in gene expression of factors implicated in the development of retinal edema and alterations in the properties of Müller cells were determined. METHODS In adult Long-Evans rats, BRVO was induced by laser photocoagulation of retinal veins; untreated eyes served as controls. The mRNA levels of after factors were determined with real-time RT-PCR in the neural retina and retinal pigment epithelium after 1 and 3 days of BRVO: VEGF-A, pigment epithelium-derived factor (PEDF), tissue factor, prothrombin, the potassium channel Kir4.1, and aquaporins 1 and 4. Potassium currents were recorded in isolated Müller cells, and cellular swelling was assessed in retinal slices. RESULTS In the neural retina, the expression of VEGF was upregulated within 1 day of BRVO and returned to the control level after 3 days. PEDF was upregulated in the neuroretina and retinal pigment epithelium after 3 days of BRVO. Prothrombin, Kir4.1, and both aquaporins were downregulated in the neuroretina. After BRVO, Müller cells displayed a decrease in their potassium currents and an altered distribution of Kir4.1 protein, an increase in the size of their somata, and cellular swelling under hypoosmotic stress that was not observed in control tissues. CONCLUSIONS BRVO results in a rapid transient increase in the expression of VEGF and a delayed increase in the expression of PEDF. The downregulation of Kir4.1 and aquaporins, the mislocation of Kir4.1 protein, and the osmotic swelling of Müller cells may contribute to the development of edema and neuronal degeneration.


Experimental Eye Research | 2011

Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats.

Katja Krügel; Antje Wurm; Thomas Pannicke; Margrit Hollborn; Anett Karl; Peter Wiedemann; Andreas Reichenbach; Leon Kohen; Andreas Bringmann

Osmotic swelling of retinal glial (Müller) cells may contribute to the development of edema in diabetic retinopathy. Here, we tested whether oxidative stress and mitochondrial dysfunction are pathogenic factors involved in the osmotic swelling of Müller cells in retinal slices from control and streptozotocin-injected hyperglycemic rats. Hypotonic challenge did not change the size of Müller cell somata from control animals but induced soma swelling in Müller cells of diabetic animals. Administration of a reducing agent blocked the osmotic swelling of Müller cell somata. In retinal tissues from control animals, administration of the reducing agent blocked also the swelling-inducing effects of antagonists of P2Y₁ and adenosine A₁ receptors. In tissues from diabetic animals, inhibition of xanthine oxidase decreased the soma swelling by approximately 50% while inhibition of NADPH oxidase and nitric oxide synthase had no effects. Blockade of mitochondrial oxidative stress by perindopril, as well as of mitochondrial permeability transition by cyclosporin A or minocycline, attenuated the swelling. In addition, activation of mitochondrial K(ATP) channels by pinacidil fully prevented the swelling. The data suggest that oxidative stress produced by xanthine oxidase, as well as the mitochondria, are implicated in the induction of osmotic swelling of Müller cells from diabetic rats.


Journal of Neuroscience Research | 2011

Down‐regulation of Kir4.1 in the cerebral cortex of rats with liver failure and in cultured astrocytes treated with glutamine: Implications for astrocytic dysfunction in hepatic encephalopathy

Marta Obara-Michlewska; Thomas Pannicke; Anett Karl; Andreas Bringmann; Andreas Reichenbach; Monika Szeliga; Wojciech Hilgier; Antoni Wrzosek; Adam Szewczyk; Jan Albrecht

Brain edema in acute hepatic encephalopathy (HE) is due mainly to swelling of astrocytes. Efflux of potassium is implicated in the prevention of glial swelling under hypoosmotic conditions. We investigated whether pathogenic factors of HE, glutamine (Gln) and/or ammonia, induce alterations in the expression of glial potassium channels (Kir4.1, Kir2.1) and Na+‐K+‐2Cl− cotransporter‐1 (NKCC1) in rat cerebral cortex and cultured rat cortical astrocytes and whether these alterations have consequences for potassium efflux and astrocytic swelling. Thioacetamide‐induced acute liver failure in rats resulted in significant decreases in the Kir4.1 mRNA and protein contents of cerebral cortex, whereas expression of Kir2.1 and NKCC1 remained unaltered. Incubation of primary cortical astrocytes for 72 hr in the presence of Gln (5 mM), but not of ammonia (5 mM or 10 mM), induced a decrease in the levels of Kir4.1 mRNA and protein. Similarly to incubation with Gln, reduction of Kir4.1 mRNA expression by RNA interference caused swelling of astrocytes as shown by confocal imaging followed by 3D computational analysis. Gln reduced the astrocytic uptake of D‐[3H]aspartate, but, in contrast to the earlier reported effect of ammonia, this reduction was not accompanied by decreased expression of the astrocytic glutamate transporter GLT‐1 mRNA. Both Gln and ammonia decreased hypoosmolarity‐induced 86Rb efflux from the cells, but the effect was more pronounced with Gln. The results indicate that down‐regulation of Kir4.1 may mediate distinct aspects of Gln‐induced astrocytic dysfunction in HE.


Glia | 2011

Synergistic action of hypoosmolarity and glutamine in inducing acute swelling of retinal glial (Müller) cells

Anett Karl; Antje Wurm; Thomas Pannicke; Katja Krügel; Marta Obara-Michlewska; Peter Wiedemann; Andreas Reichenbach; Jan Albrecht; Andreas Bringmann

High blood ammonia, elevated glutamine, and hyponatremia are pathogenic factors contributing to astrocytic swelling and brain edema in liver failure. We investigated the effects of hypoosmolarity, ammonia, and glutamine on the induction of glial cell swelling in freshly isolated slices of the rat retina. Glutamine, but not ammonia or hypoosmolarity per se, evoked a rapid (within one minute) swelling of retinal glial (Müller) cell bodies under hypoosmotic conditions. Under isoosmotic conditions, glutamine evoked a delayed swelling after 10 min of exposure. The effect of glutamine was concentration‐dependent, with half‐maximal and maximal effects at ∼ 0.1 and 0.5 mM. Glutamine in hypoosmotic solution induced a dissipation of the mitochondrial membrane potential. The effects on the mitochondrial membrane potential and the glial soma size were reduced by (i) agents which inhibit the transfer of glutamine into mitochondria and its hydrolysis there, (ii) inhibition of the mitochondrial permeability transition, (iii) inhibitors of oxidative‐nitrosative stress, and (iv) inhibitors of phospholipase A2 and cyclooxygenase. Glutamine‐induced glial swelling was also prevented by ATP and adenosine, acting at adenosine A1 receptors. The data suggest that hypoosmolarity accelerates the swelling‐inducing effect of glutamine on retinal glial cells, and that swelling induction by glutamine is mediated by inducing oxidative‐nitrosative stress, inflammatory lipid mediators, and mitochondrial dysfunction.


PLOS ONE | 2014

Unidirectional Photoreceptor-to-Müller Glia Coupling and Unique K+ Channel Expression in Caiman Retina

Astrid Zayas-Santiago; Silke Agte; Yomarie Rivera; Jan Benedikt; Elke Ulbricht; Anett Karl; José Dávila; Alexey Savvinov; Yuriy V. Kucheryavykh; Mikhail Inyushin; Luis A. Cubano; Thomas Pannicke; Rüdiger W. Veh; Mike Francke; Alexei Verkhratsky; Misty J. Eaton; Andreas Reichenbach; Serguei N. Skatchkov

Background Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. Methods We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. Results Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. Conclusion Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.


International Journal of Developmental Neuroscience | 2008

Muller cell gliosis in retinal organ culture mimics gliotic alterations after ischemia in vivo

Heidrun Kuhrt; Antje Wurm; Anett Karl; Ianors Iandiev; Peter Wiedemann; Andreas Reichenbach; Andreas Bringmann; Thomas Pannicke

A decrease in the expression of inwardly rectifying potassium (Kir) currents is a characteristic feature of retinal glial (Müller) cells in various retinopathies, e.g., after transient retinal ischemia. We used short‐term retinal organ cultures to investigate whether similar physiological alterations can be induced under in vitro conditions. During 4 days in vitro, Müller cells displayed a decrease in Kir currents and an increase in transient A‐type potassium currents which was similar to the alterations in membrane physiology during ischemia‐reperfusion in vivo. In addition, gliosis of Müller cells both in vivo and in organ cultures was associated with cellular hypertrophy and an alteration in osmotic swelling characteristics. Whereas Müller cells in control retinae did not swell under hypotonic stress, cells in postischemic retinae and in organ cultures swelled upon hypotonic challenge. Therefore, Müller cells in organ cultures can be used to investigate distinct aspects of ischemia‐induced Müller cell gliosis. Both the decrease in Kir currents and the alteration in osmotic swelling may reflect a dysfunction of Müller cells regarding the control of the ionic and osmotic homeostasis in the retina.


Proceedings of the Royal Society B: Biological Sciences | 2017

Early evolution of radial glial cells in Bilateria

Conrad Helm; Anett Karl; Patrick Beckers; Sabrina Kaul-Strehlow; Elke Ulbricht; Ioannis Kourtesis; Heidrun Kuhrt; Harald Hausen; Thomas Bartolomaeus; Andreas Reichenbach; Christoph Bleidorn

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system—composed of sensory cells, neurons and radial glial cells—was probably the plesiomorphic condition in the bilaterian ancestor.


Acta Ophthalmologica | 2015

Dose‐dependent collagen cross‐linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology

Carsten Schuldt; Anett Karl; Nicole Körber; Christian A. Koch; Qing Liu; Anatol Fritsch; Andreas Reichenbach; Peter Wiedemann; Josef A. Käs; Mike Francke; Hans Peter Iseli

To determine the visco‐elastic properties of isolated rabbit scleral tissue and dose‐dependent biomechanical and morphological changes after collagen cross‐linking by riboflavin/blue light treatment.


Investigative Ophthalmology & Visual Science | 2012

Physiologic properties of Müller cells from human eyes affected with uveal melanoma.

Antje Grosche; Thomas Pannicke; Anett Karl; Ianors Iandiev; Mike Francke; Peter Wiedemann; Andreas Reichenbach; Andreas Bringmann

PURPOSE To study physiologic characteristics of human Müller cells from healthy and pathologically altered eyes. METHODS Human tissue was used from organ donors and from patients affected with uveal melanoma. Several melanoma eyes also showed retinal detachment. Incubation of freshly prepared slices with a commercial vital dye preferentially stained Müller cells. The Müller cell response to hypotonic stress was observed by recording the cross-sectional area of cell somata. Electrophysiologic properties were investigated in parallel in whole-cell patch-clamp experiments. RESULTS Inward K+ currents mediated by inwardly rectifying Kir channels were significantly decreased in Müller cells from eyes with uveal melanoma compared with healthy controls. This was accompanied by a decrease of the membrane potential. Both effects were stronger in cells from eyes where the melanoma had caused a widespread retinal detachment. Application of a hypotonic solution did not affect Müller cells from healthy organ donors. By contrast, Müller cells from some melanoma eyes increased their soma size in response to hypotonic solution. This effect was aggravated in cells from eyes with widespread retinal detachment. The inflammatory mediator, arachidonic acid, could induce Müller cell swelling, whereas anti-inflammatory substances reduced the swelling. CONCLUSIONS The experiments with human tissue confirm earlier data from animal models for retinal pathologies about typical alterations of reactive Müller cells. Hypotonic stress induced Müller cell swelling preferentially in cells from melanoma-affected eyes that displayed decreased inward current amplitudes. Widespread melanoma-associated retinal detachment potentiated the pathologic alterations of Müller cells.


Experimental Eye Research | 2018

Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure

Anett Karl; Silke Agte; Astrid Zayas-Santiago; Felix Makarov; Yomarie Rivera; Jan Benedikt; Mike Francke; Andreas Reichenbach; Serguei N. Skatchkov; Andreas Bringmann

&NA; It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light‐scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine‐based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision. HighlightsRetinal ultrastructure of the spectacled caiman reveals adaptions to dim light vision.Rod dominance and retinal tapetum suggest an increase in retinal light sensitivity.Single‐rowed photoreceptor nuclei penetrate the outer limiting membrane.Radial Müller glial cells may improve light transmission through the neuroretina.Ellipsosomes in double cones may improve visual contrast under twilight conditions.

Collaboration


Dive into the Anett Karl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian A. Koch

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge