Antje Wurm
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antje Wurm.
Progress in Retinal and Eye Research | 2009
Andreas Bringmann; Ianors Iandiev; Thomas Pannicke; Antje Wurm; Margrit Hollborn; Peter Wiedemann; Neville N. Osborne; Andreas Reichenbach
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Graefes Archive for Clinical and Experimental Ophthalmology | 2007
Andreas Reichenbach; Antje Wurm; Thomas Pannicke; Ianors Iandiev; Peter Wiedemann; Andreas Bringmann
BackgroundUnder normal conditions, Müller cells support neuronal activity and the integrity of the blood-retinal barrier, whereas gliotic alterations of Müller cells under pathological conditions may contribute to retinal degeneration and edema formation. A major function of Müller cells is the fluid absorption from the retinal tissue, which is mediated by transcellular water transport coupled to currents through potassium channels.MethodsAlterations of retinal Müller cells under pathological conditions were investigated by immunohistochemistry and recording their behavior under osmotic stress.ResultsIn animal models of various retinopathies, e.g., retinal ischemia, ocular inflammation, retinal detachment, and diabetes, it was found that Müller cells decrease the expression of their major potassium channel (Kir4.1). This alteration is associated with an impairment of the rapid water transport across Müller cell membranes, as recognizable in the induction of cellular swelling under hypoosmolar conditions. Osmotic swelling of Müller cells is also induced by oxidative stress and by inflammatory mediators such as arachidonic acid and prostaglandins.ConclusionsThe data suggest that a disturbed fluid transport through Müller cells is (in addition to vascular leakage) a pathogenic factor contributing to the development of retinal edema. Pharmacological re-activation of the retinal water clearance by Müller cells may represent an approach to the development of new edema-resolving drugs. Triamcinolone acetonide, which is clinically used to resolve edema, prevents osmotic swelling of Müller cells as it induces the release of endogenous adenosine and subsequent A1 receptor activation which results in the opening of ion channels. Apparently, triamcinolone resolves edema by both inhibition of vascular leakage and stimulation of retinal fluid clearance by Müller cells.
Investigative Ophthalmology & Visual Science | 2009
Matus Rehak; Margrit Hollborn; Ianors Iandiev; Thomas Pannicke; Anett Karl; Antje Wurm; Leon Kohen; Andreas Reichenbach; Peter Wiedemann; Andreas Bringmann
PURPOSE In a rat model of branch retinal vein occlusion (BRVO), changes in gene expression of factors implicated in the development of retinal edema and alterations in the properties of Müller cells were determined. METHODS In adult Long-Evans rats, BRVO was induced by laser photocoagulation of retinal veins; untreated eyes served as controls. The mRNA levels of after factors were determined with real-time RT-PCR in the neural retina and retinal pigment epithelium after 1 and 3 days of BRVO: VEGF-A, pigment epithelium-derived factor (PEDF), tissue factor, prothrombin, the potassium channel Kir4.1, and aquaporins 1 and 4. Potassium currents were recorded in isolated Müller cells, and cellular swelling was assessed in retinal slices. RESULTS In the neural retina, the expression of VEGF was upregulated within 1 day of BRVO and returned to the control level after 3 days. PEDF was upregulated in the neuroretina and retinal pigment epithelium after 3 days of BRVO. Prothrombin, Kir4.1, and both aquaporins were downregulated in the neuroretina. After BRVO, Müller cells displayed a decrease in their potassium currents and an altered distribution of Kir4.1 protein, an increase in the size of their somata, and cellular swelling under hypoosmotic stress that was not observed in control tissues. CONCLUSIONS BRVO results in a rapid transient increase in the expression of VEGF and a delayed increase in the expression of PEDF. The downregulation of Kir4.1 and aquaporins, the mislocation of Kir4.1 protein, and the osmotic swelling of Müller cells may contribute to the development of edema and neuronal degeneration.
Glia | 2006
Serguei N. Skatchkov; Misty J. Eaton; Yaroslav Shuba; Yuriy V. Kucheryavykh; C. Derst; Rüdiger W. Veh; Antje Wurm; Ianors Iandiev; Thomas Pannicke; Andreas Bringmann; Andreas Reichenbach
Tandem‐pore domain (2P‐domain) K+‐channels regulate neuronal excitability, but their function in glia, particularly, in retinal glial cells, is unclear. We have previously demonstrated the immunocytochemical localization of the 2P‐domain K+ channels TASK‐1 and TASK‐2 in retinal Müller glial cells of amphibians. The purpose of the present study was to determine whether these channels were functional, by employing whole‐cell recording from frog and mammalian (guinea pig, rat and mouse) Müller cells and confocal microscopy to monitor swelling in rat Müller cells. TASK‐like immunolabel was localized in these cells. The currents mediated by 2P‐domain channels were studied in isolation after blocking Kir, KA, KD, and BK channels. The remaining cell conductance was mostly outward and was depressed by acid pH, bupivacaine, methanandamide, quinine, and clofilium, and activated by alkaline pH in a manner consistent with that described for TASK channels. Arachidonic acid (an activator of TREK channels) had no effect on this conductance. Blockade of the conductance with bupivacaine depolarized the Müller cell membrane potential by about 50%. In slices of the rat retina, adenosine inhibited osmotic glial cell swelling via activation of A1 receptors and subsequent opening of 2P‐domain K+ channels. The swelling was strongly increased by clofilium and quinine (inhibitors of 2P‐domain K+ channels). These data suggest that 2P‐domain K+ channels are involved in homeostasis of glial cell volume, in activity‐dependent spatial K+ buffering and may play a role in maintenance of a hyperpolarized membrane potential especially in conditions where Kir channels are blocked or downregulated.
Journal of Biological Chemistry | 2011
Ines Liebscher; Uwe Müller; Daniel Teupser; Eva Engemaier; Kathrin M. Engel; Lars Ritscher; Doreen Thor; Katrin Sangkuhl; Albert Ricken; Antje Wurm; Daniel Piehler; Sandra Schmutzler; Herbert Fuhrmann; Frank W. Albert; Andreas Reichenbach; Joachim Thiery; Torsten Schöneberg; Angela Schulz
The X-chromosomal GPR34 gene encodes an orphan Gi protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges.
Investigative Ophthalmology & Visual Science | 2008
Ianors Iandiev; Antje Wurm; Margrit Hollborn; Peter Wiedemann; Christian Grimm; Charlotte E. Remé; Andreas Reichenbach; Thomas Pannicke; Andreas Bringmann
PURPOSE In addition to photoreceptor degeneration, excessive light causes degenerative alterations in the inner retina and ganglion cell death. A disturbance in osmohomeostasis may be one causative factor for the alterations in the inner retina. Because Müller cells mediate inner retinal osmohomeostasis (mainly through channel-mediated transport of potassium ions and water), the authors investigated whether these cells alter their properties in response to excessive blue light. METHODS Retinas of adult rats were exposed to blue light for 30 minutes. At various time periods after treatment, retinal slices were immunostained against glial fibrillary acidic protein and potassium and water channel proteins (Kir4.1, aquaporin-1, aquaporin-4). Patch-clamp recordings of potassium currents were made in isolated Müller cells, and the swelling of Müller cell bodies was recorded in retinal slices. RESULTS After blue light treatment, Müller cells displayed hypertrophy and increased glial fibrillary acidic protein. The immunostaining of the glial water channel aquaporin-4 was increased in the outer retina, whereas the immunostaining of the photoreceptor water channel aquaporin-1 disappeared. Blue light treatment resulted in a decrease and a dislocation of the Kir4.1 protein in the whole retinal tissue and a decrease in the potassium conductance of Müller cells. Hypo-osmotic stress evoked a swelling of Müller cell bodies in light-treated retinas that was not observed in control tissues. CONCLUSIONS The decrease in functional Kir channels may result in a disturbance of retinal potassium and water homeostasis, contributing to the degenerative alterations of the inner retina after exposure to blue light.
Glia | 2006
Antje Wurm; Thomas Pannicke; Ianors Iandiev; Peter Wiedemann; Andreas Reichenbach; Andreas Bringmann
A major function of glial cells is the control of osmotic and ionic homeostasis, mediated by K+ and water movements predominantly through inwardly rectifying K+ (Kir) and aquaporin water channels. It has been suggested that K+ currents through Kir channels are implicated in the regulation of glial cell volume. Here, we investigated whether the developmental increase in Kir channel expression in Müller glial cells of the rat retina is associated with an alteration of cell volume regulation under anisoosmotic conditions. Around the time of eye opening at postnatal day (P) 15, developing retinal glial cells fully alter the profile of their membrane conductances, from a current pattern with prominent fast transient K+ and Na+ currents to a pattern of noninactivating currents through Kir and delayed rectifier K+ channels. Concomitantly, aquaporins‐1 and ‐4 are expressed in the developing retina. This is accompanied by a conspicuous alteration of the swelling characteristics of cells; somata of immature glial cells in early postnatal retinas (P5–P15) swell under hypotonic stress but no swelling is inducible in mature cells at P18 and thereafter. However, glial cells at all developmental stages swell when their Kir channels are blocked by Ba2+. The postnatal maturation of Kir channel currents and volume regulation in retinal glial cells is delayed by visual deprivation. The data suggest that Kir channels are crucially involved in osmotic volume homeostasis of mature glial cells, and that the absence of Kir channels in immature cells is a major cause of their insufficient volume regulation.
Progress in Retinal and Eye Research | 2011
Antje Wurm; Thomas Pannicke; Ianors Iandiev; Mike Francke; Margrit Hollborn; Peter Wiedemann; Andreas Reichenbach; Neville N. Osborne; Andreas Bringmann
Purines (in particular, ATP and adenosine) act as neuro- and gliotransmitters in the sensory retina where they are involved in bidirectional neuron-glia signaling. This review summarizes the present knowledge about the expression and functional importance of P1 (adenosine) and P2 (nucleotide) receptors in Müller glial cells of the mammalian retina. Mammalian Müller cells express various subtypes of adenosine receptors and metabotropic P2Y receptors. Human Müller cells also express ionotropic P2X(7) receptors. Müller cells release ATP upon activation of metabotropic glutamate receptors and/or osmotic membrane stretching. The osmotic mechanism is abrogated under conditions associated with ischemia-hypoxia and inflammation, resulting in swelling of the Müller cells when the extracellular milieu is hypoosmotic. However, exogenous glutamate, which induces the release of ATP and adenosine, and thus activates P2Y(1) and A(1) adenosine receptors, respectively, prevents such osmotic swelling under pathological conditions, suggesting unimpaired receptor-induced release of ATP. In addition to the inhibition of swelling, which is implicated in regulating the volume of the extracellular space, purinergic signaling is involved in mediating neurovascular coupling. Furthermore, purinergic signals stimulate the proliferation of retinal precursor cells and Müller cells. In normal retinal information processing, Müller cells regulate the synaptic activity by the release of ATP and adenosine. In retinopathies, abrogation of the osmotic release of ATP, and the upregulation of ecto-apyrase (NTPDase1), may have neuroprotective effects by preventing the overactivation of neuronal P2X receptors that are implicated in apoptotic cell death. Pharmacological modulation of purinergic receptors of Müller cells may have clinical importance, e.g., for the clearance of retinal edema and for the inhibition of dysregulated cell proliferation in proliferative retinopathies.
Journal of Neurochemistry | 2010
Antje Wurm; Stephan Lipp; Thomas Pannicke; Regina Linnertz; Ute Krügel; Angela Schulz; Katrin Färber; Dirk Zahn; Johannes Grosse; Peter Wiedemann; Ju Chen; Torsten Schöneberg; Peter Illes; Andreas Reichenbach; Andreas Bringmann
J. Neurochem. (2010) 112, 1261–1272.
Journal of Neurochemistry | 2008
Petra G. Hirrlinger; Antje Wurm; Johannes Hirrlinger; Andreas Bringmann; Andreas Reichenbach
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling‐inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.