Angel Alegría
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angel Alegría.
Journal of Chemical Physics | 1998
Rikard Bergman; F. Alvarez; Angel Alegría; J. Colmenero
Using broad-band dielectric spectroscopy (10−2–109 Hz) the merging of the α- and β-relaxations has been investigated for a polymer, syndiotactic poly(methyl methacrylate) (PMMA), in which the dielectric losses are dominated by a strong β-relaxation. The asymmetrically shaped β-relaxation cannot be described by a Cole–Cole function, not even at low temperatures where the α- and β-relaxations are well separated in frequency. At higher temperatures close to Tg (=404 K), the weak α-relaxation enters our dynamic window and rapidly merges with the β-relaxation. To investigate this merging process we first used a simple addition of two Havriliak–Negami (HN) equations to fit the spectra. The obtained relaxation time for the β-relaxation then displays a kink in its temperature dependence close to Tg. To gain further understanding of the merging, the data were analyzed by means of a regularization method in order to calculate the corresponding distributions of relaxation times directly from the actual measurements ...
International Journal of Food Microbiology | 2009
Angel Alegría; Pablo Álvarez-Martín; Noelia Sacristán; Elena Fernández; Susana Delgado; Baltasar Mayo
Classical culturing and denaturing gradient gel electrophoresis (DGGE) techniques have been used for studying the microbial diversity and dynamics of the traditional Spanish Casín cheese during manufacturing and ripening. As with other starter-free cheeses made from raw milk, the microbial diversity of Casín was shown to be high by both culturing and DGGE analyses. The culture technique showed that lactic acid bacteria (LAB) species constituted the majority of the microbial populations. Of the 14 bacterial species identified, Lactococcus garvieae was predominant in the three-day-old cheese sample, although it was replaced by Lactococcus lactis subsp. lactis at day 30. As expected, the DGGE profiles obtained were complex, consisting, depending on the sample, in five to ten different amplification bands. Among these, a band corresponding to Streptococcus thermophilus was observed throughout the whole manufacturing process. This species had never been identified from traditional Spanish cheeses previously. Culturing and molecular methods showed high populations of undesirable microorganisms, arguing for a required improvement in the hygiene of Casín manufacture. Random amplification of polymorphic DNA (RAPD) profiling suggested that the L. garvieae and L. lactis populations were composed of one and five strains, respectively. In addition, only a single L. lactis RAPD pattern was stably maintained from day three to day 30, indicating high succession of strains along ripening. After a thoroughly characterisation, strains of the two Lactococcus species could be used in designing specific starter cultures for Casín. Additional species (such as Lactobacillus plantarum and Corynebacterium variabile) might be included as adjunct cultures.
Soft Matter | 2012
Virginie M. Boucher; Daniele Cangialosi; Huajie Yin; Andreas Schönhals; Angel Alegría; J. Colmenero
We investigate the segmental dynamics and glass transition temperature (Tg) of polystyrene (PS) thin films. The former is investigated by alternating current (AC) calorimetry and dielectric spectroscopy (BDS). The Tg, underlying the equilibrium to out-of-equilibrium crossover from the supercooled liquid to the glass, is obtained by differential scanning calorimetry (DSC) and capacitive dilatometry (CD). We show that the intrinsic molecular dynamics of PS are independent of the film thickness both for the freestanding and supported films, whereas Tg decreases with film thickness from several microns down to 15 nm. This result is found for complementary methods and in a simultaneous measurement in BDS and CD. This questions the widespread notion that segmental mobility and the equilibrium to out-of-equilibrium transition are, under any experimental conditions, fully interrelated. For thin films, it appears that the molecular mobility and Tg are affected differently by geometrical factors.
Applied and Environmental Microbiology | 2012
Angel Alegría; Pawel Szczesny; Baltasar Mayo; Jacek Bardowski; Magdalena Kowalczyk
ABSTRACT Oscypek is a traditional Polish scalded-smoked cheese, with a protected-designation-of-origin (PDO) status, manufactured from raw sheeps milk without starter cultures in the Tatra Mountains region of Poland. This study was undertaken in order to gain insight into the microbiota that develops and evolves during the manufacture and ripening stages of Oscypek. To this end, we made use of both culturing and the culture-independent methods of PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing of 16S rRNA gene amplicons. The culture-dependent technique and PCR-DGGE fingerprinting detected the predominant microorganisms in traditional Oscypek, whereas the next-generation sequencing technique (454 pyrosequencing) revealed greater bacterial diversity. Besides members of the most abundant bacterial genera in dairy products, e.g., Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, and Enterococcus, identified by all three methods, other, subdominant bacteria belonging to the families Bifidobacteriaceae and Moraxellaceae (mostly Enhydrobacter), as well as various minor bacteria, were identified by pyrosequencing. The presence of bifidobacterial sequences in a cheese system is reported for the first time. In addition to bacteria, a great diversity of yeast species was demonstrated in Oscypek by the PCR-DGGE method. Culturing methods enabled the determination of a number of viable microorganisms from different microbial groups and their isolation for potential future applications in specific cheese starter cultures.
International Journal of Food Microbiology | 2010
Angel Alegría; Susana Delgado; Clara Roces; Belén López; Baltasar Mayo
Sixty bacterial strains were encountered by random amplification of polymorphic DNA (RAPD) and repetitive extragenic palindromic (REP) typing in a series of 306 Lactococcus lactis isolates collected during the manufacturing and ripening stages of five traditional, starter-free cheeses made from raw milk. Among the 60 strains, 17 were shown to produce bacteriocin-like compounds in both solid and liquid media. At a genotypic level, 16 of the strains were identified by molecular methods as belonging to L. lactis subsp. lactis and one to L. lactis subsp. cremoris. Among the L. lactis subsp. lactis strains, phenotypic and genetic data determined that eleven produced either nisin A (nine strains) or nisin Z (two strains), and that five produced lactococcin 972. Variable levels of the two bacteriocins were produced by different strains. In addition, nisin was shown to be produced in inexpensive, dairy- and meat-based media, which will allow the practical application of its producing strains in industrial processes. Specific PCR and nucleotide and deduced amino acid sequence analysis identified the inhibitor produced by the single L. lactis subsp. cremoris isolate as a lactococcin G-like bacteriocin. Beyond the use of bacteriocins as functional ingredients for the biopreservation of foods, the newly identified bacteriocin-producing L. lactis strains from traditional cheeses may also be useful for designing starter cultures with protective properties and/or adjunct cultures for accelerating cheese ripening.
Soft Matter | 2013
Daniele Cangialosi; Virginie M. Boucher; Angel Alegría; J. Colmenero
Physical aging is a ubiquitous phenomenon in glassy materials and originates from the fact that they are generally out-of-equilibrium. Due to the technological and fundamental implications, this phenomenon has been deeply investigated in the last decades especially in glassy polymers. Here we provide a critical review of the latest hot debated themes in the field of physical aging in polymers and polymer nanocomposites. We first summarize the fundamental aspects of physical aging, highlighting its relationship with the polymer segmental mobility. A review of the methods employed to monitor physical aging is also provided, in particular those probing the time dependent evolution of thermodynamic variables (or related to) and those probing the (quasi)instantaneous polymer segmental mobility. We subsequently focus our attention on the two following debated topics in the field of physical aging of polymers: (i) the fate of the dynamics and thermodynamics of glassy polymers below the glass transition temperature (Tg), i.e. the temperature below which physical aging occurs; (ii) the modification of physical aging induced by the presence of inorganic nanofillers in polymer nanocomposites. With respect to the former point particular attention is devoted to recent findings concerning possible deviations from the behavior normally observed above Tg of both dynamics and thermodynamics deep in the glassy state. Regarding the effect of the presence of nanofillers on the rate of physical aging, the role of the modification of the polymer segmental mobility and that of purely geometric factors are discussed with particular emphasis on the most recent advances in the topic. The modification of the rate of physical aging in other nanostructured systems, such as polymer thin films, is discussed with particular emphasis on the analogy in terms of a large amount of interface with polymer nanocomposites.
Applied and Environmental Microbiology | 2011
Elena Fernández; Angel Alegría; Susana Delgado; M. Cruz Martín; Baltasar Mayo
ABSTRACT Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates.
Soft Matter | 2011
Virginie M. Boucher; Daniele Cangialosi; Angel Alegría; J. Colmenero; Isabel Pastoriza-Santos; Luis M. Liz-Marzán
The aim of this work is to study the effect of gold nanoparticles on the segmental dynamics, glass transition (Tg) and physical aging of polystyrene (PS). To do so, PS/gold nanocomposite samples containing 5 and 15 wt% of 60 nm spherical gold nanoparticles, surface-treated with thiolated-PS, were prepared. The segmental dynamics of PS, as measured by means of broadband dielectric spectroscopy (BDS), was found to be unchanged in the presence of gold nanoparticles. Conversely, the calorimetric Tg of PS was shown to decrease with increasing the amount of gold nanoparticles in the samples. Furthermore, by measuring the amount of recovered enthalpy of PS—by means of DSC—after annealing at temperatures below Tg for various aging times, the physical aging was shown to speed up with increasing the nanoparticles weight fraction, i.e. the amount of PS/gold interface in the hybrid material. Thus, the main conclusion of our work is that PS molecular mobility and the out-of-equilibrium dynamics are markedly decoupled in these nanocomposites. The significant effect of the amount of PS/gold interface on both the physical aging rate of PS and the depression of the calorimetric Tg in the presence of nanoparticles is quantitatively accounted for by a model based on the diffusion of free volume holes towards polymer interfaces, with a diffusion coefficient depending only on the molecular mobility.
Current Genomics | 2014
Baltasar Mayo; Caio T. C. C. Rachid; Angel Alegría; Analy Machado de Oliveira Leite; Raquel S. Peixoto; Susana Delgado
Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety.
Journal of Chemical Physics | 2006
Silvina Cerveny; Gustavo A. Schwartz; Angel Alegría; Rikard Bergman; Jan Swenson
The relaxation dynamics of dipropylene glycol and tripropylene glycol (nPG-n=2,3) water solutions on the nPG-rich side has been studied by broadband dielectric spectroscopy and differential scanning calorimetry in the temperature range of 130-280 K. Two relaxation processes are observed for all the hydration levels; the slower process (I) is related to the alpha relaxation of the solution whereas the faster one (II) is associated with the reorientation of water molecules in the mixture. Dielectric data for process (II) at temperatures between 150 and 200 K indicate the existence of a critical water concentration (x(c)) below which water mobility is highly restricted. Below x(c), nPG-water domains drive the dielectric signal whereas above x(c), water-water domains dominate the dielectric response at low temperatures. The results also show that process (II) at low temperatures is due to local motions of water molecules in the glassy frozen matrix. Additionally, we will show that the glass transition temperatures (T(g)) for aqueous PG, 2PG, and 3PG solutions do not extrapolate to approximately 136 K, regardless of the extrapolation method. Instead, we find that the extrapolated T(g) value for water from these solutions lies in the neighborhood of 165 K.