Angela Breeuwer
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela Breeuwer.
Oecologia | 2008
Angela Breeuwer; Monique M. P. D. Heijmans; Bjorn J. M. Robroek; Frank Berendse
Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.
Ecosystems | 2010
Angela Breeuwer; Monique M. P. D. Heijmans; Bjorn J. M. Robroek; Frank Berendse
A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen (N) deposition will affect the species composition in bog vegetation is still unclear. We performed a transplantation experiment in which mesocosms with intact vegetation were transplanted southward from north Sweden to north-east Germany along a transect of four bog sites, in which both temperature and N deposition increased. In addition, we monitored undisturbed vegetation in control plots at the four sites of the latitudinal gradient. Four growing seasons after transplantation, ericaceous dwarf shrubs had become much more abundant when transplanted to the warmest site which also had highest N deposition. As a result ericoid aboveground biomass in the transplanted mesocosms increased most at the southernmost site, this site also had highest ericoid biomass in the undisturbed vegetation. The two dominant Sphagnum species showed opposing responses when transplanted southward; Sphagnum balticum height increment decreased, whereas S. fuscum height increment increased when transplanted southward. Sphagnum production did not differ significantly among the transplanted mesocosms, but was lowest in the southernmost control plots. The dwarf shrub expansion and increased N concentrations in plant tissues we observed, point in the direction of a positive feedback toward vascular plant-dominance suppressing peat-forming Sphagnum in the long term. However, our data also indicate that precipitation and phosphorus availability influence the competitive balance between Sphagnum, dwarf shrubs and graminoids.
New Phytologist | 2012
Juul Limpens; Gustaf Granath; R. Aerts; Monique M. P. D. Heijmans; Lucy J. Sheppard; Luca Bragazza; B. L. Williams; Håkan Rydin; Jill L. Bubier; Tim R. Moore; Line Rochefort; Edward A. D. Mitchell; Alexandre Buttler; L. van den Berg; Urban Gunnarsson; A. J Francez; Renato Gerdol; M. Thormann; P. Grosvernier; M. M. Wiedermann; Mats Nilsson; Marcel R. Hoosbeek; S. Bayley; J. F Nordbakken; M. P. C. P. Paulissen; Stefan Hotes; Angela Breeuwer; M. Ilomets; Hilde B. M. Tomassen; Ian D. Leith
• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. • We investigated whether glasshouse experiments are reliable proxies for field experiments for assessing interactions between N deposition and environment as controls on Sphagnum N concentration and production. We performed a meta-analysis over 115 glasshouse experiments and 107 field experiments. • We found that glasshouse and field experiments gave similar qualitative and quantitative estimates of changes in Sphagnum N concentration in response to N application. However, glasshouse-based estimates of changes in production--even qualitative assessments-- diverged from field experiments owing to a stronger N effect on production response in absence of vascular plants in the glasshouse, and a weaker N effect on production response in presence of vascular plants compared to field experiments. • Thus, although we need glasshouse experiments to study how interacting environmental factors affect the response of Sphagnum to increased N deposition, we need field experiments to properly quantify these effects.
Wetlands | 2007
Bjorn J. M. Robroek; Juul Limpens; Angela Breeuwer; Jasper van Ruijven; Matthijs G.C. Schouten
On raised bogs, the distribution of Sphagnum species is determined by their distance to the water table, but occasionally species are able to survive outside their niche. Hollow species that persist in hummock vegetation are assumed to profit from the higher water content of the surrounding hummock species, although the mechanism responsible is unclear. In this study, we elucidated the role of lateral hummock water transport (LHWT) and precipitation on the water content of hollow species occurring in hummocks. This was tested using a full factorial field transplantation experiment with cores of Sphagnum cuspidatum in a high and a low hummock. Treatments included direct precipitation (present or absent) and LHWT (present or absent). Fresh weights of the cores were measured at regular time intervals. Our results show a relatively large effect of precipitation on the water content in both the high and low hummock, whereas LHWT only seemed to be an important source of water in the high hummock, which was relatively dry. Furthermore, LHWT played an important role only after large precipitation events, suggesting that lateral water transport is indirectly affected by rain. This study shows that precipitation alone can explain the persistence of hollow species in high hummocks, whereas it was less important for hollow species in low hummocks. Our data suggest that the survival and potential expansion of hollow species in higher hummocks strongly depends on the intensity and frequency of rain events. Changes in precipitation patterns may result in a loss of Sphagnum diversity in hummocks.
Basic and Applied Ecology | 2009
Angela Breeuwer; Bjorn J. M. Robroek; Juul Limpens; Monique M. P. D. Heijmans; Matthijs G.C. Schouten; Frank Berendse
Plant Ecology | 2007
Bjorn J. M. Robroek; Juul Limpens; Angela Breeuwer; Matthijs G.C. Schouten
Oecologia | 2009
Gustaf Granath; Joachim Strengbom; Angela Breeuwer; Monique M. P. D. Heijmans; Frank Berendse; Håkan Rydin
Oikos | 2008
Angela Breeuwer; Monique M. P. D. Heijmans; Bjorn J. M. Robroek; Juul Limpens; Frank Berendse
Plant Ecology | 2009
Angela Breeuwer; Monique M. P. D. Heijmans; Maurits Gleichman; Bjorn J. M. Robroek; Frank Berendse
Functional Ecology | 2007
Bjorn J. M. Robroek; Juul Limpens; Angela Breeuwer; P.H. Crushell; Matthijs G.C. Schouten