Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Cacace is active.

Publication


Featured researches published by Angela Cacace.


Molecular Psychiatry | 2015

Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder

Dominique Arion; John P. Corradi; Shaowu Tang; Dibyadeep Datta; Franklyn Boothe; Aiqing He; Angela Cacace; Robert Zaczek; Charles F. Albright; George C. Tseng; David A. Lewis

Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3 and, to a lesser extent, in layer 5. Although many studies have profiled gene expression in DLPFC gray matter in schizophrenia, little is known about cell-type-specific transcript expression in these two populations of pyramidal cells. We hypothesized that interrogating gene expression, specifically in DLPFC layer 3 or 5 pyramidal cells, would reveal new and/or more robust schizophrenia-associated differences that would provide new insights into the nature of pyramidal cell dysfunction in the illness. We also sought to determine the impact of other variables, such as a diagnosis of schizoaffective disorder or medication use at the time of death, on the patterns of gene expression in pyramidal neurons. Individual pyramidal cells in DLPFC layers 3 or 5 were captured by laser microdissection from 36 subjects with schizophrenia or schizoaffective disorder and matched normal comparison subjects. The mRNA from cell collections was subjected to transcriptome profiling by microarray followed by quantitative PCR validation. Expression of genes involved in mitochondrial (MT) or ubiquitin–proteasome system (UPS) functions were markedly downregulated in the patient group (P-values for MT-related and UPS-related pathways were <10−7 and <10−5, respectively). MT-related gene alterations were more prominent in layer 3 pyramidal cells, whereas UPS-related gene alterations were more prominent in layer 5 pyramidal cells. Many of these alterations were not present, or found to a lesser degree, in samples of DLPFC gray matter from the same subjects, suggesting that they are pyramidal cell specific. Furthermore, these findings principally reflected alterations in the schizophrenia subjects were not present or present to a lesser degree in the schizoaffective disorder subjects (diagnosis of schizoaffective disorder was the most significant covariate, P<10−6) and were not attributable to factors frequently comorbid with schizophrenia. In summary, our findings reveal expression deficits in MT- and UPS-related genes specific to layer 3 and/or layer 5 pyramidal cells in the DLPFC of schizophrenia subjects. These cell type-specific transcriptome signatures are not characteristic of schizoaffective disorder, providing a potential molecular–cellular basis of differences in clinical phenotypes.


Neurobiology of Disease | 2012

The NMDA receptor co-agonists, D-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex.

Darrick T. Balu; Alo C. Basu; John P. Corradi; Angela Cacace; Joseph T. Coyle

There is substantial evidence, both pharmacological and genetic, that hypofunction of the N-methyl-d-aspartate receptor (NMDAR) is a core pathophysiological feature of schizophrenia. There are morphological brain changes associated with schizophrenia, including perturbations in the dendritic morphology of cortical pyramidal neurons and reduction in cortical volume. Our experiments investigated whether these changes in dendritic morphology could be recapitulated in a genetic model of NMDAR hypofunction, the serine racemase knockout (SR-/-) mouse. Pyramidal neurons in primary somatosensory cortex (S1) of SR-/- mice had reductions in the complexity, total length, and spine density of apical and basal dendrites. In accordance with reduced cortical neuropil, SR-/- mice also had reduced cortical volume as compared to wild type mice. Analysis of S1 mRNA by DNA microarray and gene expression analysis revealed gene changes in SR-/- that are associated with psychiatric and neurologic disorders, as well as neurodevelopment. The microarray analysis also identified reduced expression of brain derived neurotrophic factor (BDNF) in SR-/- mice. Follow-up analysis by ELISA confirmed a reduction of BDNF protein levels in the S1 of SR-/- mice. Finally, S1 pyramidal neurons in glycine transporter heterozygote (GlyT1+/-) mutants, which display enhanced NMDAR function, had increased dendritic spine density. These results suggest that proper NMDAR function is important for the arborization and spine density of pyramidal neurons in cortex. Moreover, they suggest that NMDAR hypofunction might, in part, be contributing to the dendritic and synaptic changes observed in schizophrenia and highlight this signaling pathway as a potential target for therapeutic intervention.


PLOS ONE | 2015

Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models

Sethu Sankaranarayanan; Donna M. Barten; Laurel Vana; Nino Devidze; Ling Yang; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Stefanie Keenan; Alan Lin; Yang Cao; Bradley Snyder; Bin Zhang; Magdalena Nitla; Gregg Hirschfeld; Nestor X. Barrezueta; Craig Polson; Paul D. Wes; Vangipuram S. Rangan; Angela Cacace; Charles F. Albright; Jere E. Meredith; John Q. Trojanowski; Virginia M.-Y. Lee; Kurt R. Brunden; Michael K. Ahlijanian

In Alzheimer’s disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Alzheimers & Dementia | 2013

Beyond amyloid: getting real about nonamyloid targets in Alzheimer's disease.

Karl Herrup; Maria C. Carrillo; Dale Schenk; Angela Cacace; Susan DeSanti; Robert T. Fremeau; Ratan Bhat; Marcie A. Glicksman; Patrick C. May; Russell H. Swerdlow; Linda J. Van Eldik; Lisa J. Bain; Samantha L. Budd

For decades, researchers have focused primarily on a pathway initiated by amyloid beta aggregation, amyloid deposition, and accumulation in the brain as the key mechanism underlying the disease and the most important treatment target. However, evidence increasingly suggests that amyloid is deposited early during the course of disease, even prior to the onset of clinical symptoms. Thus, targeting amyloid in patients with mild to moderate Alzheimers disease (AD), as past failed clinical trials have done, may be insufficient to halt further disease progression. Scientists are investigating other molecular and cellular pathways and processes that contribute to AD pathogenesis. Thus, the Alzheimers Associations Research Roundtable convened a meeting in April 2012 to move beyond amyloid and explore AD as a complex multifactorial disease, with the goal of using a more inclusive perspective to identify novel treatment strategies.


PLOS ONE | 2014

Tau Overexpression Impacts a Neuroinflammation Gene Expression Network Perturbed in Alzheimer’s Disease

Paul D. Wes; Amy Easton; John P. Corradi; Donna M. Barten; Nino Devidze; Lynn B. DeCarr; Amy Truong; Aiqing He; Nestor X. Barrezueta; Craig Polson; Clotilde Bourin; Marianne E. Flynn; Stefanie Keenan; Regina Lidge; Jere E. Meredith; Joanne Natale; Sethu Sankaranarayanan; Greg W. Cadelina; Charlie F. Albright; Angela Cacace

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer’s disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer’s disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.


Journal of Medicinal Chemistry | 2013

Discovery of 2-(phenoxypyridine)-3-phenylureas as small molecule P2Y1 antagonists.

Hannguang Chao; Huji Turdi; Timothy F. Herpin; Jacques Y. Roberge; Yalei Liu; Dora M. Schnur; Michael A. Poss; Robert Rehfuss; Ji Hua; Qimin Wu; Laura A. Price; Lynn M. Abell; William A. Schumacher; Jeffrey S. Bostwick; Thomas E. Steinbacher; Anne B. Stewart; Martin L. Ogletree; Christine Huang; Ming Chang; Angela Cacace; Maredith J. Arcuri; Deborah Celani; Ruth R. Wexler; R. Michael Lawrence

Two distinct G protein-coupled purinergic receptors, P2Y1 and P2Y12, mediate ADP-driven platelet activation. The clinical effectiveness of P2Y12 blockade is well established. Recent preclinical data suggest that P2Y1 and P2Y12 inhibition provide equivalent antithrombotic efficacy, while targeting P2Y1 has the potential for reduced bleeding liability. In this account, the discovery of a 2-(phenoxypyridine)-3-phenylurea chemotype that inhibited ADP-mediated platelet aggregation in human blood samples is described. Optimization of this series led to the identification of compound 16, 1-(2-(2-tert-butylphenoxy)pyridin-3-yl)-3-4-(trifluoromethoxy)phenylurea, which demonstrated a 68 ± 7% thrombus weight reduction in an established rat arterial thrombosis model (10 mg/kg plus 10 mg/kg/h) while only prolonging cuticle and mesenteric bleeding times by 3.3- and 3.1-fold, respectively, in provoked rat bleeding time models. These results suggest that a P2Y1 antagonist could potentially provide a safe and efficacious antithrombotic profile.


Journal of Biomolecular Screening | 2007

Use of Cryopreserved Transiently Transfected Cells in High-Throughput Pregnane X Receptor Transactivation Assay

Zhengrong Zhu; Jaime Puglisi; David Connors; Jeremy Stewart; John J. Herbst; Anthony Marino; Michael Sinz; Jonathan O'Connell; Martyn Banks; Kenneth E.J. Dickinson; Angela Cacace

Cryopreserved, transiently transfected HepG2 cells were compared to freshly transfected HepG2 cells for use in a pregnane X receptor (PXR) transactivation assay. Assay performance was similar for both cell preparations; however, cryopreserved cells demonstrated less interassay variation. Validation with drugs of different PXR activation potencies and efficacies demonstrated an excellent correlation (r 2 > 0.95) between cryopreserved and fresh cells. Cryopreservation did not change the effect of known CYP3A4 inducers that have poor cell permeability, indicating that cryopreservation had little effect on membrane permeability. In addition, cryopreserved HepG2 cells did not exhibit enhanced susceptibility to cytotoxic compounds compared to transiently transfected control cells. The use of cryopreserved cells enables this assay to run with enhanced efficiency.


Drug Discovery Today | 2003

An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors

Angela Cacace; Martyn Banks; Timothy P. Spicer; Francesca Civoli; John Watson

G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.


Journal of Biomolecular Screening | 2008

Characterization of the 5-HT2b Receptor in Evaluation of Aequorin Detection of Calcium Mobilization for Miniaturized GPCR High-Throughput Screening

Mark A. Gilchrist; Angela Cacace; David G. Harden

Fluorescent detection of calcium mobilization has been used successfully to identify modulators of G-protein—coupled receptors (GPCRs); however, inherent issues with fluorescence may limit its potential for high-throughput screening miniaturization. The data presented here demonstrate that the calcium-sensitive photoprotein aequorin (AequoScreen™), when compared with FLUO-4 in the same cellular background, allows for miniaturization of functional kinetic calcium flux assays, in which the rank order of potency and efficacy was maintained for a series of diverse small-molecule modulators. Small-volume (<10 µL) 384- and 1536-well aequorin assays were implemented by integration of acoustic dispensing (Echo 550™) and kinetic flash luminometry (CyBi Lumax™). The enhanced high signal-to-background ratios observed relative to fluorescence were readily manipulated by altering per-well cell densities and yielded acceptable screening statistics in miniaturized format for both agonist and antagonist screening scenarios. In addition, the authors demonstrate the feasibility of using agonist concentrations less than EC50 in a miniaturized antagonist assay. These features, coupled with improved sample handling, should enhance sensitivity and provide the benefits of miniaturization including cost reduction and throughput gains. (Journal of Biomolecular Screening 2008:486-493)


Journal of Pharmacology and Experimental Therapeutics | 2015

Discovery of D1 Dopamine Receptor Positive Allosteric Modulators: Characterization of Pharmacology and Identification of Residues that Regulate Species Selectivity

Martin A. Lewis; Lisa Hunihan; John Watson; Robert G. Gentles; Shuanghua Hu; Yazhong Huang; Joanne J. Bronson; John E. Macor; Brett R. Beno; Meredith Ferrante; Adam Hendricson; Ronald J. Knox; Thaddeus F. Molski; Yan Kong; Mary Ellen Cvijic; Kristin L. Rockwell; Michael R. Weed; Angela Cacace; Ryan S. Westphal; Andrew Alt; Jeffrey M. Brown

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.

Collaboration


Dive into the Angela Cacace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge