Angela Capper
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela Capper.
Hydrobiologia | 2006
Angela Capper; Edwin Cruz-Rivera; Valerie J. Paul; Ian R. Tibbetts
This study investigates the influence of mesograzer prior exposure to toxic metabolites on palatability of the marine cyanobacterium, Lyngbya majuscula. We examined the palatability of L. majuscula crude extract obtained from a bloom in Moreton Bay, South East Queensland, Australia, containing lyngbyatoxin-a (LTA) and debromoaplysiatoxin (DAT), to two groups: (1) mesograzers of L. majuscula from Guam where LTA and DAT production is rare; and (2) macro- and mesograzers found feeding on L. majuscula blooms in Moreton Bay where LTA and DAT are often prevalent secondary metabolites. Pair-wise feeding assays using artificial diets consisting of Ulvaclathrata suspended in agar (control) or coated with Moreton Bay L. majuscula crude extracts (treatment) were used to determine palatability to a variety of consumers. In Guam, the amphipods, Parhyale hawaiensis and Cymadusa imbroglio; the majid crab Menaethius monoceros; and the urchin Echinometra mathaei were significantly deterred by the Moreton Bay crude extract. The sea hares, Stylocheilus striatus, from Guam were stimulated to feed by treatment food whereas S. striatus collected from Moreton Bay showed no discrimination between food types. In Moreton Bay, the cephalaspidean Diniatys dentifer and wild caught rabbitfish Siganus fuscescens were significantly deterred by the crude extract. However, captive-bred S. fuscescens with no known experience with L.majuscula did not clearly discriminate between food choices. Lyngbyamajuscula crude extract deters feeding by most mesograzers regardless of prior contact or association with blooms.
Toxicon | 2015
Lauren Meyer; Steve Carter; Angela Capper
Ciguatera fish poisoning is a debilitating human neuro-intoxication caused by consumption of tropical marine organisms, contaminated with bioaccumulated ciguatoxins (CTXs). The growing number of cases coupled with the high toxicity of CTXs makes their reliable detection and quantification of paramount importance. Three commonly occurring ciguatoxins, P-CTX-1, 2 and 3 from five different ciguatoxic Spanish mackerel (Scomberomorus commerson), were used to assess the effectiveness of different extraction techniques: homogenization (high powered blending vs. ultrasonication); C-18 column sizes (500 mg vs. 900 mg); and a novel HILIC SPE cleanup. Despite minor differences, blending and sonication proved equally effective. Larger 900 mg columns offered a greater extraction efficiency, increasing detected P-CTX-1 by 37% (P < 0.001). The newly adapted cleanup was highly effective at reducing co-eluting phospholipids thereby reducing matrix effects and increasing detectable CTXs by HPLC-MS/MS. Silica cleanup extraction efficiencies were also compared between the highly effective and validated ciguatoxin rapid extraction method (CREM) and current best practice extraction method employed by Queensland Health (QH). Overall, the QH protocol proved more effective, especially when paired with the newly adapted cleanup, as this increased the amount of extracted P-CTX-1 by 46% (P < 0.01), P-CTX-2 by 10% and P-CTX-3 by 71% (P = 0.001). This study suggests the QH protocol utilizing a 900 mg C-18 column and newly adapted HILIC SPE cleanup was most effective at extracting P-CTX-1, -2, -3. Specifically P-CTX-1, the primary ciguatoxin congener of concern due to its extremely high potency and an ability to cause CFP at 0.1 μg/kg following consumption of carnivorous fish flesh. Despite being more time intensive (an additional 85 min per batch of 12 samples), this will be especially effective for assessing lower toxin burdens, which may be near the limit of detection.
Toxicon | 2016
Lauren Meyer; Angela Capper; Steve Carter; Colin A. Simpfendorfer
Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production, accumulation and transformation throughout the entire food-web.
Harmful Algae | 2008
Karen E. Arthur; Colin J. Limpus; George H. Balazs; Angela Capper; James Udy; G. R. Shaw; Ursula Keuper-Bennett; Peter Bennett
Journal of Chemical Ecology | 2005
Angela Capper; Ian R. Tibbetts; Judith M. O'Neil; G. R. Shaw
Harmful Algae | 2014
Gurjeet S. Kohli; Shauna A. Murray; Brett A. Neilan; Lesley Rhodes; D. Tim Harwood; Kirsty F. Smith; Lauren Meyer; Angela Capper; Steve Brett; Gustaaf M. Hallegraeff
Harmful Algae | 2008
Angela Capper; Valerie J. Paul
Harmful Algae | 2013
Angela Capper; Leanne J. Flewelling; Karen E. Arthur
Journal of Fish Biology | 2006
Angela Capper; Ian R. Tibbetts; Judith M. O'Neil; G. R. Shaw
Journal of Experimental Marine Biology and Ecology | 2006
Angela Capper; Ian R. Tibbetts; Judith M. O'Neil; G. R. Shaw