Steve Carter
Queensland Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steve Carter.
Marine Pollution Bulletin | 2000
David Haynes; Jochen F. Müller; Steve Carter
Pesticides and herbicides including organochlorine compounds have had extensive current and past application by Queenslands intensive coastal agriculture industry as web as for a wide range of domestic, public health and agricultural purposes in urban areas, The persistent nature of these types of compounds together with possible continued illegal use of banned organochlorine compounds raises the potential for continued long-term chronic exposure to plants and animals of the Great Barrier Reef. Sediment and seagrass samples were collected from 16 intertidal and 25 subtidal sampling sites between Torres Strait and Townsville, near Mackay and Gladstone, and in Hervey and Moreton Bays in 1997 and 1998 and analysed for pesticide and herbicide residues. Low levels of atrazine (0.1-0.3 mug kg(-1)), diuron (0.2-10.1 mug kg(-1)), lindane (0.08-0.19 mug kg(-1)), dieldrin (0.05-0.37 mug kg(-1)), DDT (0.05-0.26 mug kg(-1)), and DDE (0.05-0.26 mug kg(-1)) were detected in sediments and/or seagrasses. Contaminants were mainly detected in samples collected along the high rainfall, tropical coast between Townsville and Port Douglas and in Moreton Bay. Of the contaminants detected, the herbicide diuron is of most concern as the concentrations detected have some potential to impact local seagrass communities, (C) 2000 Elsevier Science Ltd. All rights reserved.
Water Research | 2011
Foon Yin Lai; Christoph Ort; Coral Gartner; Steve Carter; Jeremy Prichard; Paul Kirkbride; Raimondo Bruno; Wayne Hall; Geoff Eaglesham; Jochen F. Mueller
Wastewater analysis is a promising monitoring tool to estimate illicit drug consumption at the community level. The advantage of this technique over traditional surveys and other surveillance methods has been emphasized in recent studies. However, there are methodological challenges that can affect reliability. The objectives of this study were to systematically reduce and assess uncertainties associated with sampling (through a stringent optimization of the sampling method) and the back calculation of per capita drug consumption (through a refined estimation of the number of people actively contributing to the wastewater in a given period). We applied continuous flow-proportional sampling to ensure the collection of representative raw wastewater samples. Residues of illicit drugs, opioids, prescription pharmaceuticals and one artificial sweetener were analyzed by liquid chromatography coupled with tandem mass spectrometry. A parameter estimating the number of people actively contributing to wastewater over a given period was calculated from the measured loads of prescription pharmaceuticals, their annual consumption and relative excretion data. For the calculation of substance loads in sewage, uncertainties were propagated considering five individual components: sampling, chemical analysis, flow measurements, excretion rates and the number of people contributing to the wastewater. The daily consumption per 1000 inhabitants was estimated to be almost 1000 mg for cannabis and several hundred mg for cocaine, methamphetamine and ecstasy. With the best sampling practice and current chemical analysis, we calculated the remaining uncertainty to be in the range of 20-30% (relative standard deviation, RSD) for the estimation of consumed drug masses in the catchment; RSDs for the per capita consumption were lower (14-24%), as one of the biggest uncertainty components (i.e. error in flow measurements) cancels out in the proposed method for the estimation of the number of people contributing to the daily wastewater volume. In this study, we provide methodological improvements that substantially enhance the reliability of the estimation method--a prerequisite for the application of this technique to meaningfully assess changes in drug consumption and the success of drug intervention strategies in future studies.
Marine Pollution Bulletin | 2010
M. Shaw; Miles Furnas; Katharina Fabricius; David Haynes; Steve Carter; Geoff Eaglesham; Jochen F. Mueller
Pesticide runoff from agriculture poses a threat to water quality in the world heritage listed Great Barrier Reef (GBR) and sensitive monitoring tools are needed to detect these pollutants. This study investigated the utility of passive samplers in this role through deployment during a wet and dry season at river mouths, two near-shore regions and an offshore region. The nearshore marine environment was shown to be contaminated with pesticides in both the dry and wet seasons (average water concentrations of 1.3-3.8 ng L(-1) and 2.2-6.4 ng L(-1), respectively), while no pesticides were detected further offshore. Continuous monitoring of two rivers over 13 months showed waters flowing to the GBR were contaminated with herbicides (diuron, atrazine, hexazinone) year round, with highest average concentrations present during summer (350 ng L(-1)). The use of passive samplers has enabled identification of insecticides in GBR waters which have not been reported in the literature previously.
Marine Pollution Bulletin | 2012
Karen Kennedy; Thomas Schroeder; M. Shaw; David Haynes; Stephen Lewis; Christie Bentley; Chris Paxman; Steve Carter; Vittorio E. Brando; Michael Bartkow; Laurence Hearn; Jochen F. Mueller
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides.
Forensic Science International | 2013
Foon Yin Lai; Raimondo Bruno; H.W. Leung; Phong K. Thai; Christoph Ort; Steve Carter; Kristie Thompson; Paul K.S. Lam; Jochen F. Mueller
The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400-1600 mg/day/1000 people) was the predominant drug followed by methamphetamine (180-200 mg/day/1000 people), cocaine (160-180 mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies.
Environmental Science & Technology | 2012
Sarit Kaserzon; Karen Kennedy; Darryl William Hawker; Jack Thompson; Steve Carter; Anthony C. Roach; Kees Booij; Jochen F. Mueller
Perfluorinated chemicals (PFCs) are emerging environmental contaminants with a global distribution. Due to their moderate water solubility, the majority of the environmental burden is assumed to be in the water phase. This work describes the application of the first passive sampler for the quantitative assessment of concentrations of perfluorinated alkylcarboxylates (PFCAs) and sulfonates (PFSAs) in water. The sampler is based on a modified Polar Organic Chemical Integrative Sampler (POCIS) with a weak anion exchange sorbent as a receiving phase. Sampling rates were between 0.16 and 0.37 L d(-1), and the duration of the kinetic sampling stage was between 2.2 and 13 d. A field deployment in the most urbanized estuary in Australia (Sydney Harbour) showed trace level concentrations from passive samplers (0.1-12 ng L(-1)), in good agreement with parallel grab sampling (0.2-16 ng L(-1)). A separate field comparison of the modified POCIS with standard POCIS suggests the latter may have application for PFC sampling, but with a more limited range of analytes than the modified POCIS which contains a sorbent with a mixed mode of action.
Marine Pollution Bulletin | 2012
Karen Kennedy; Michelle Devlin; Christie Bentley; Kristie Lee-Chue; Chris Paxman; Steve Carter; Stephen Lewis; Jon Brodie; Ellia Guy; Suzanne Vardy; Katherine Martin; Alison Jones; Robert Packett; Jochen F. Mueller
The 2010-2011 wet season was one of extreme weather for the State of Queensland, Australia. Major rivers adjacent to the Great Barrier Reef (GBR) were discharging at rates 1.5 to >3 times higher than their long term median. Exposure to photosystem II herbicides has been routinely monitored over a period of up to 5 years at 12 inshore GBR sites. The influence of this wet season on exposure to photosystem II herbicides was examined in the context of this long-term monitoring record and during flood plume events in specific regions. Median exposures expressed as diuron equivalent concentration were an average factor of 2.3 times higher but mostly not significantly different (p<0.05) to the median for the long-term monitoring record. The herbicides metolachlor and tebuthiuron were frequently detected in flood plume waters at concentrations that reached or exceeded relevant water quality guidelines (by up to 4.5 times).
Environmental Pollution | 2010
Karen Kennedy; Darryl William Hawker; Michael Bartkow; Steve Carter; Yukari Ishikawa; Jochen F. Mueller
Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m(3) day(-1) and 2.2-6.8 m(3) day(-1) respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates.
Science of The Total Environment | 2016
Foon Yin Lai; Jake O'Brien; Raimondo Bruno; Wayne Hall; Jeremy Prichard; K. Paul Kirkbride; Coral Gartner; Phong K. Thai; Steve Carter; Belinda Lloyd; Lucy Burns; Jochen F. Mueller
Obtaining representative information on illicit drug use and patterns across a country remains difficult using surveys because of low response rates and response biases. A range of studies have used wastewater-based epidemiology (WBE) as a complementary approach to monitor community-wide illicit drug use. In Australia, no large-scale WBE studies have been conducted to date to reveal illicit drug use profiles in a national context. In this study, we performed the first Australia-wide WBE monitoring to examine spatial patterns in the use of three illicit stimulants (cocaine, as its human metabolite benzoylecgonine; methamphetamine; and 3,4-methylendioxymethamphetamine (MDMA)). A total of 112 daily composite wastewater samples were collected from 14 wastewater treatment plants across four states and two territories. These covered approximately 40% of the Australian population. We identified and quantified illicit drug residues using liquid chromatography coupled with tandem mass spectrometry. There were distinctive spatial patterns of illicit stimulant use in Australia. Multivariate analyses showed that consumption of cocaine and MDMA was higher in the large cities than in rural areas. Also, cocaine consumption differed significantly between different jurisdictions. Methamphetamine consumption was more similar between urban and rural locations. Only a few cities had elevated levels of use. Extrapolation of the WBE estimates suggested that the annual consumption was 3tonnes for cocaine and 9tonnes combined for methamphetamine and MDMA, which outweighed the annual seizure amount by 25 times and 45 times, respectively. These ratios imply the difficulty of detecting the trafficking of these stimulants in Australia, possibly more so for methamphetamine than cocaine. The obtained spatial pattern of use was compared with that in the most recent national household survey. Together both WBE and survey methods provide a more comprehensive evaluation of drug use that can assist governments in developing policies to reduce drug use and harm in the communities.
Environmental Pollution | 2009
T. Komarova; Michael Bartkow; Sibylle Rutishauser; Steve Carter; Jochen F. Mueller
Semipermeable membrane devices (SPMDs) were deployed in water using four different methods: a typical SPMD cage with and without a mesh cover, a bowl chamber and without any protection. In addition to routinely used performance reference compounds (PRCs), perdeuterated dibenz[a,h]anthracene was added. Due to its high sampler to water partition coefficient no measurable clearance due to diffusion was expected during the deployment period, hence any observed loss could be attributed to photodegradation. The loss of PRCs was measured and SPMD-based water concentrations determined. Results showed that a typical SPMD deployment cage covered with mesh provided the best protection from photodegradation. Samplers which had undergone the highest photodegradation underestimated PAH water concentrations by up to a factor of 5 compared to the most protected SPMDs. This study demonstrates that the potential for photodegradation needs to be addressed when samplers are deployed in water of low turbidity.
Collaboration
Dive into the Steve Carter's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs