Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela D. Friederici is active.

Publication


Featured researches published by Angela D. Friederici.


Trends in Cognitive Sciences | 2002

Towards a neural basis of auditory sentence processing

Angela D. Friederici

Functional dissociations within the neural basis of auditory sentence processing are difficult to specify because phonological, syntactic and semantic information are all involved when sentences are perceived. In this review I argue that sentence processing is supported by a temporo-frontal network. Within this network, temporal regions subserve aspects of identification and frontal regions the building of syntactic and semantic relations. Temporal analyses of brain activation within this network support syntax-first models because they reveal that building of syntactic structure precedes semantic processes and that these interact only during a later stage.


Nature Neuroscience | 2001

Musical syntax is processed in Broca's area: an MEG study

Burkhard Maess; Stefan Koelsch; Thomas C. Gunter; Angela D. Friederici

The present experiment was designed to localize the neural substrates that process music-syntactic incongruities, using magnetoencephalography (MEG). Electrically, such processing has been proposed to be indicated by early right-anterior negativity (ERAN), which is elicited by harmonically inappropriate chords occurring within a major-minor tonal context. In the present experiment, such chords elicited an early effect, taken as the magnetic equivalent of the ERAN (termed mERAN). The source of mERAN activity was localized in Brocas area and its right-hemisphere homologue, areas involved in syntactic analysis during auditory language comprehension. We find that these areas are also responsible for an analysis of incoming harmonic sequences, indicating that these regions process syntactic information that is less language-specific than previously believed.


Physiological Reviews | 2011

The brain basis of language processing: From structure to function

Angela D. Friederici

Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.


Human Brain Mapping | 2006

Investigating emotion with music: An fMRI study

Stefan Koelsch; Thomas Fritz; D. Yves von Cramon; Angela D. Friederici

The present study used pleasant and unpleasant music to evoke emotion and functional magnetic resonance imaging (fMRI) to determine neural correlates of emotion processing. Unpleasant (permanently dissonant) music contrasted with pleasant (consonant) music showed activations of amygdala, hippocampus, parahippocampal gyrus, and temporal poles. These structures have previously been implicated in the emotional processing of stimuli with (negative) emotional valence; the present data show that a cerebral network comprising these structures can be activated during the perception of auditory (musical) information. Pleasant (contrasted to unpleasant) music showed activations of the inferior frontal gyrus (IFG, inferior Brodmanns area (BA) 44, BA 45, and BA 46), the anterior superior insula, the ventral striatum, Heschls gyrus, and the Rolandic operculum. IFG activations appear to reflect processes of music–syntactic analysis and working memory operations. Activations of Rolandic opercular areas possibly reflect the activation of mirror‐function mechanisms during the perception of the pleasant tunes. Rolandic operculum, anterior superior insula, and ventral striatum may form a motor‐related circuitry that serves the formation of (premotor) representations for vocal sound production during the perception of pleasant auditory information. In all of the mentioned structures, except the hippocampus, activations increased over time during the presentation of the musical stimuli, indicating that the effects of emotion processing have temporal dynamics; the temporal dynamics of emotion have so far mainly been neglected in the functional imaging literature. Hum Brain Mapp 2005.


Brain and Language | 1995

The time course of syntactic activation during language processing: a model based on neuropsychological and neurophysiological data.

Angela D. Friederici

This paper presents a model describing the temporal and neurotopological structure of syntactic processes during comprehension. It postulates three distinct phases of language comprehension, two of which are primarily syntactic in nature. During the first phase the parser assigns the initial syntactic structure on the basis of word category information. These early structural processes are assumed to be subserved by the anterior parts of the left hemisphere, as event-related brain potentials show this area to be maximally activated when phrase structure violations are processed and as circumscribed lesions in this area lead to an impairment of the on-line structural assignment. During the second phase lexical-semantic and verb-argument structure information is processed. This phase is neurophysiologically manifest in a negative component in the event-related brain potential around 400 ms after stimulus onset which is distributed over the left and right temporo-parietal areas when lexical-semantic information is processed and over left anterior areas when verb-argument structure information is processed. During the third phase the parser tries to map the initial syntactic structure onto the available lexical-semantic and verb-argument structure information. In case of an unsuccessful match between the two types of information reanalyses may become necessary. These processes of structural reanalysis are correlated with a centroparietally distributed late positive component in the event-related brain potential.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Cognitive Neuroscience | 2002

fMRI Evidence for Dual Routes to the Mental Lexicon in Visual Word Recognition

Christian J. Fiebach; Angela D. Friederici; D. Yves von Cramon

Event-related fMRI was used to investigate lexical decisions to words of high and low frequency of occurrence and to pseudowords. The results obtained strongly support dual-route models of visual word processing. By contrasting words with pseudowords, bilateral occipito-temporal brain areas and posterior left middle temporal gyrus (MTG) were identified as contributing to the successful mapping of orthographic percepts onto visual word form representations. Low-frequency words and pseudowords elicited greater activations than high-frequency words in the superior pars opercularis [Brodmanns area (BA) 44] of the left inferior frontal gyrus (IFG), in the anterior insula, and in the thalamus and caudate nucleus. As processing of these stimuli during lexical search is known to rely on phonological information, it is concluded that these brain regions are involved in grapheme-to-phoneme conversion. Activation in the pars triangularis (BA 45) of the left IFG was observed only for low-frequency words. It is proposed that this region is involved in processes of lexical selection.


Journal of Experimental Psychology: Learning, Memory and Cognition | 1996

Temporal structure of syntactic parsing: Early and late event-related brain potential effects

Angela D. Friederici; Anja Hahne; Axel Mecklinger

Event-related brain potentials (ERPs) were recorded from participants listening to or reading sentences that were correct, contained a violation of the required syntactic category, or contained a syntactic-category ambiguity. When sentences were presented auditorily (Experiment 1), there was an early left anterior negativity for syntactic-category violations, but not for syntactic-category ambiguities. Both anomaly types elicited a late centroparietally distributed positivity. When sentences were presented visually word by word (Experiment 2), again an early left anterior negativity was found only for syntactic-category violations, and both types of anomalies elicited a late positivity. The combined data are taken to be consistent with a 2-stage model of parsing, including a 1st stage, during which an initial phrase structure is built and a 2nd stage, during which thematic role assignment and, if necessary, reanalysis takes place. Disruptions to the 1st stage of syntactic parsing appear to be correlated with an early left anterior negativity, whereas disruptions to the 2nd stage might be correlated with a late posterior distributed positivity.


NeuroImage | 2002

Bach Speaks: A Cortical "Language-Network" Serves the Processing of Music

Stefan Koelsch; Thomas C. Gunter; D. Yves von Cramon; Stefan Zysset; Gabriele Lohmann; Angela D. Friederici

The aim of the present study was the investigation of neural correlates of music processing with fMRI. Chord sequences were presented to the participants, infrequently containing unexpected musical events. These events activated the areas of Broca and Wernicke, the superior temporal sulcus, Heschls gyrus, both planum polare and planum temporale, as well as the anterior superior insular cortices. Some of these brain structures have previously been shown to be involved in music processing, but the cortical network comprising all these structures has up to now been thought to be domain-specific for language processing. To what extent this network might also be activated by the processing of non-linguistic information has remained unknown. The present fMRI-data reveal that the human brain employs this neuronal network also for the processing of musical information, suggesting that the cortical network known to support language processing is less domain-specific than previously believed.


Journal of Cognitive Neuroscience | 2000

Brain Indices of Music Processing: Nonmusicians are Musical

Stefan Koelsch; Thomas C. Gunter; Angela D. Friederici; Erich Schröger

Only little systematic research has examined event-related brain potentials (ERPs) elicited by the cognitive processing of music. The present study investigated how music processing is influenced by a preceding musical context, affected by the task relevance of unexpected chords, and influenced by the degree and the probability of violation. Four experiments were conducted in which nonmusicians listened to chord sequences, which infrequently contained a chord violating the sound expectancy of listeners. Integration of in-key chords into the musical context was reflected as a late negative-frontal deflection in the ERPs. This negative deflection declined towards the end of a chord sequence, reflecting normal buildup of musical context. Brain waves elicited by chords with unexpected notes revealed two ERP effects: an early right-hemispheric preponderant-anterior negativity, which was taken to reflect the violation of sound expectancy; and a late bilateral-frontal negativity. The late negativity was larger compared to in-key chords and taken to reflect the higher degree of integration needed for unexpected chords. The early right-anterior negativity (ERAN) was unaffected by the task relevance of unexpected chords. The amplitudes of both early and late negativities were found to be sensitive to the degree of musical expectancy induced by the preceding harmonic context, and to the probability for deviant acoustic events. The employed experimental design opens a new field for the investigation of music processing. Results strengthen the hypothesis of an implicit musical ability of the human brain.


Nature Neuroscience | 1999

Brain potentials indicate immediate use of prosodic cues in natural speech processing

Karsten Steinhauer; Kai Alter; Angela D. Friederici

Spoken language, in contrast to written text, provides prosodic information such as rhythm, pauses, accents, amplitude and pitch variations. However, little is known about when and how these features are used by the listener to interpret the speech signal. Here we use event–related brain potentials (ERP) to demonstrate that intonational phrasing guides the initial analysis of sentence structure. Our finding of a positive shift in the ERP at intonational phrase boundaries suggests a specific on–line brain response to prosodic processing. Additional ERP components indicate that a false prosodic boundary is sufficient to mislead the listeners sentence processor. Thus, the application of ERP measures is a promising approach for revealing the time course and neural basis of prosodic information processing.

Collaboration


Dive into the Angela D. Friederici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Hahne

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge