Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Yves von Cramon is active.

Publication


Featured researches published by D. Yves von Cramon.


The Journal of Neuroscience | 2005

Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring

Stefan Debener; Markus Ullsperger; Markus Siegel; Katja Fiehler; D. Yves von Cramon; Andreas Engel

Goal-directed behavior requires the continuous monitoring and dynamic adjustment of ongoing actions. Here, we report a direct coupling between the event-related electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and behavioral measures of performance monitoring in humans. By applying independent component analysis to EEG signals recorded simultaneously with fMRI, we found the single-trial error-related negativity of the EEG to be systematically related to behavior in the subsequent trial, thereby reflecting immediate behavioral adjustments of a cognitive performance monitoring system. Moreover, this trial-by-trial EEG measure of performance monitoring predicted the fMRI activity in the rostral cingulate zone, a brain region thought to play a key role in processing of response errors. We conclude that investigations of the dynamic coupling between EEG and fMRI provide a powerful approach for the study of higher order brain functions.


Cognitive Brain Research | 2000

Prefrontal cortex activation in task switching: an event-related fMRI study.

Anja Dove; Stefan Pollmann; Torsten Schubert; Christopher J. Wiggins; D. Yves von Cramon

When a switch between two tasks has to be carried out, performance is slower than in trials where the same task is performed repeatedly. This finding has been attributed to time-consuming control processes required for task switching. Previous results of other paradigms investigating cognitive control processes suggested that prefrontal cortex is involved in executive control. We used event-related fMRI to investigate prefrontal cortex involvement in task switching. Regions in the lateral prefrontal and premotor cortex bilaterally, the anterior insula bilaterally, the left intraparietal sulcus, the SMA/pre-SMA region and the cuneus/precuneus were activated by the task repetition condition and showed additional activation in the task switch condition. This confirmed the hypothesis that lateral prefrontal cortex is involved in task switching. However, the results also showed that this region is neither the only region involved in task switching nor a region specifically involved in task switching.


Human Brain Mapping | 2005

Involvement of the Inferior Frontal Junction in Cognitive Control: Meta-Analyses of Switching and Stroop Studies

Jan Derrfuss; Marcel Brass; Jane Neumann; D. Yves von Cramon

There is growing evidence that a specific region in the posterior frontolateral cortex is involved intimately in cognitive control processes. This region, located in the vicinity of the junction of the inferior frontal sulcus and the inferior precentral sulcus, was termed the inferior frontal junction (IFJ). The IFJ was shown to be involved in the updating of task representations and to be activated commonly in a within‐subject investigation of a task‐switching paradigm, the Stroop task, and a verbal n‐back task. Here, we investigate the involvement of the IFJ in cognitive control by employing a meta‐analytic approach. Two quantitative meta‐analyses of functional magnetic resonance imaging (fMRI) studies were conducted. One meta‐analysis included frontal activations from task‐switching, set‐shifting, and stimulus–response (S–R) reversal studies, the other included frontal activations from color–word Stroop studies. Results showed highly significant clustering of activations in the IFJ in both analyses. These results provide strong evidence for the consistent involvement of the IFJ in both switching and Stroop paradigms. Furthermore, they support our concept of areal specialization in the frontolateral cortex, which posits that it is not only the middorsolateral part that plays an important role in cognitive control, but also the IFJ. Finally, our results demonstrate how quantitative meta‐analyses can be used to test hypotheses about the involvement of specific brain regions in cognitive control. Hum Brain Mapp 25:22–34, 2005.


Journal of Cognitive Neuroscience | 2002

fMRI Evidence for Dual Routes to the Mental Lexicon in Visual Word Recognition

Christian J. Fiebach; Angela D. Friederici; D. Yves von Cramon

Event-related fMRI was used to investigate lexical decisions to words of high and low frequency of occurrence and to pseudowords. The results obtained strongly support dual-route models of visual word processing. By contrasting words with pseudowords, bilateral occipito-temporal brain areas and posterior left middle temporal gyrus (MTG) were identified as contributing to the successful mapping of orthographic percepts onto visual word form representations. Low-frequency words and pseudowords elicited greater activations than high-frequency words in the superior pars opercularis [Brodmanns area (BA) 44] of the left inferior frontal gyrus (IFG), in the anterior insula, and in the thalamus and caudate nucleus. As processing of these stimuli during lexical search is known to rely on phonological information, it is concluded that these brain regions are involved in grapheme-to-phoneme conversion. Activation in the pars triangularis (BA 45) of the left IFG was observed only for low-frequency words. It is proposed that this region is involved in processes of lexical selection.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Striatum and pre-SMA facilitate decision-making under time pressure

Birte U. Forstmann; Gilles Dutilh; Scott D. Brown; Jane Neumann; D. Yves von Cramon; K. Richard Ridderinkhof; Eric-Jan Wagenmakers

Human decision-making almost always takes place under time pressure. When people are engaged in activities such as shopping, driving, or playing chess, they have to continually balance the demands for fast decisions against the demands for accurate decisions. In the cognitive sciences, this balance is thought to be modulated by a response threshold, the neural substrate of which is currently subject to speculation. In a speed decision-making experiment, we presented participants with cues that indicated different requirements for response speed. Application of a mathematical model for the behavioral data confirmed that cueing for speed lowered the response threshold. Functional neuroimaging showed that cueing for speed activates the striatum and the pre-supplementary motor area (pre-SMA), brain structures that are part of a closed-loop motor circuit involved in the preparation of voluntary action plans. Moreover, activation in the striatum is known to release the motor system from global inhibition, thereby facilitating faster but possibly premature actions. Finally, the data show that individual variation in the activation of striatum and pre-SMA is selectively associated with individual variation in the amplitude of the adjustments in the response threshold estimated by the mathematical model. These results demonstrate that when people have to make decisions under time pressure their striatum and pre-SMA show increased levels of activation.


NeuroImage | 2002

Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results

Bertram Opitz; Teemu Rinne; Axel Mecklinger; D. Yves von Cramon; Erich Schröger

The present study addresses the functional role of the temporal and frontal lobes in auditory change detection. Prior event-related potential (ERP) research suggested that the mismatch negativity (MMN) reflects the involvement of a temporofrontal network subserving auditory change detection processes and the initiation of an involuntary attention switch. In the present study participants were presented with repetitive spectrally rich sounds. Infrequent changes of either small (10% change), medium (30% change), or large (100% change) magnitude were embedded in the stimulus train. ERPs and fMRI measures were obtained in the same subjects in subsequent sessions. Significant hemodynamic activation in the superior temporal gyri (STG) bilaterally and the opercular part of the right inferior frontal gyrus was observed for large and medium deviants only. ERPs showed that small deviants elicited MMN when presented in silence but not when presented with recorded MR background noise, indicating that small deviants were hardly detected under fMRI conditions. The MR signal change in temporal lobe regions was larger for large than for medium deviants. For the right fronto-opercular cortex the opposite pattern was observed. The strength of the temporal activation correlated with the amplitude of the change-related ERP at around 110 ms from stimulus onset while the frontal activation correlated with the change-related ERP at around 150 ms. These results suggest that the right fronto-opercular cortex is part of the neural network generating the MMN. Three alternative explanations of these findings are discussed.


NeuroImage | 2002

Bach Speaks: A Cortical "Language-Network" Serves the Processing of Music

Stefan Koelsch; Thomas C. Gunter; D. Yves von Cramon; Stefan Zysset; Gabriele Lohmann; Angela D. Friederici

The aim of the present study was the investigation of neural correlates of music processing with fMRI. Chord sequences were presented to the participants, infrequently containing unexpected musical events. These events activated the areas of Broca and Wernicke, the superior temporal sulcus, Heschls gyrus, both planum polare and planum temporale, as well as the anterior superior insular cortices. Some of these brain structures have previously been shown to be involved in music processing, but the cortical network comprising all these structures has up to now been thought to be domain-specific for language processing. To what extent this network might also be activated by the processing of non-linguistic information has remained unknown. The present fMRI-data reveal that the human brain employs this neuronal network also for the processing of musical information, suggesting that the cortical network known to support language processing is less domain-specific than previously believed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Prediction of human errors by maladaptive changes in event-related brain networks

Tom Eichele; Stefan Debener; Vince D. Calhoun; Karsten Specht; Andreas K. Engel; Kenneth Hugdahl; D. Yves von Cramon; Markus Ullsperger

Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.


Trends in Cognitive Sciences | 2005

The role of the inferior frontal junction area in cognitive control.

Marcel Brass; Jan Derrfuss; Birte U. Forstmann; D. Yves von Cramon

Cognitive control processes refer to our ability to coordinate thoughts and actions in accordance with internal goals. In the fronto-lateral cortex such processes have been primarily related to mid-dorsolateral prefrontal cortex (mid-DLPFC). However, recent brain-imaging and meta-analytic studies suggest that a region located more posterior in the fronto-lateral cortex plays a pivotal role in cognitive control as well. This region has been termed the inferior frontal junction area and can be functionally and structurally distinguished from mid-DLPFC.


Brain and Language | 2000

Auditory language comprehension: An event-related fMRI study on the processing of syntactic and lexical information

Angela D. Friederici; Martin Meyer; D. Yves von Cramon

The functional specificity of different brain areas recruited in auditory language processing was investigated by means of event-related functional magnetic resonance imaging (fMRI) while subjects listened to speech input varying in the presence or absence of semantic and syntactic information. There were two sentence conditions containing syntactic structure, i.e., normal speech (consisting of function and content words), syntactic speech (consisting of function words and pseudowords), and two word-list conditions, i.e., real words and pseudowords. The processing of auditory language, in general, correlates with significant activation in the primary auditory cortices and in adjacent compartments of the superior temporal gyrus bilaterally. Processing of normal speech appeared to have a special status, as no frontal activation was observed in this case but was seen in the three other conditions. This difference may point toward a certain automaticity of the linguistic processes used during normal speech comprehension. When considering the three other conditions, we found that these were correlated with activation in both left and right frontal cortices. An increase of activation in the planum polare bilaterally and in the deep portion of the left frontal operculum was found exclusively when syntactic processes were in focus. Thus, the present data may be taken to suggest an involvement of the left frontal and bilateral temporal cortex when processing syntactic information during comprehension.

Collaboration


Dive into the D. Yves von Cramon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Ullsperger

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge