Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela D. Schulze is active.

Publication


Featured researches published by Angela D. Schulze.


Environmental Biology of Fishes | 2004

Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus

Kristina M. Miller; James R. Winton; Angela D. Schulze; Maureen K. Purcell; Tobi J. Ming

Infectious hematopoietic necrosis virus (IHNV) is one of the most significant viral pathogens of salmonids and is a leading cause of death among cultured juvenile fish. Although several vaccine strategies have been developed, some of which are highly protective, the delivery systems are still too costly for general use by the aquaculture industry. More cost effective methods could come from the identification of genes associated with IHNV resistance for use in selective breeding. Further, identification of susceptibility genes may lead to an improved understanding of viral pathogenesis and may therefore aid in the development of preventive and therapeutic measures. Genes of the major histocompatibility complex (MHC), involved in the primary recognition of foreign pathogens in the acquired immune response, are associated with resistance to a variety of diseases in vertebrate organisms. We conducted a preliminary analysis of MHC disease association in which an aquaculture strain of Atlantic salmon was challenged with IHNV at three different doses and individual fish were genotyped at three MHC loci using denaturing gradient gel electrophoresis (PCR-DGGE), followed by sequencing of all differentiated alleles. Nine to fourteen alleles per exon-locus were resolved, and alleles potentially associated with resistance or susceptibility were identified. One allele (Sasa-B-04) from a potentially non-classical class I locus was highly associated with resistance to infectious hematopoietic necrosis (p < 0.01). This information can be used to design crosses of specific haplotypes for family analysis of disease associations.


Evolutionary Applications | 2014

Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines

Kristina M. Miller; Amy K. Teffer; Strahan Tucker; Shaorong Li; Angela D. Schulze; Marc Trudel; Francis Juanes; Amy Tabata; Karia H. Kaukinen; Norma Ginther; Tobi J. Ming; Steven J. Cooke; J. Mark Hipfner; David Patterson; Scott G. Hinch

Emerging diseases are impacting animals under high‐density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2009

Salmon spawning migration: metabolic shifts and environmental triggers.

Kristina M. Miller; Angela D. Schulze; Norma Ginther; Shaorong Li; David Patterson; Anthony P. Farrell; Scott G. Hinch

A large-scale functional genomics study revealed shifting metabolic processes in white muscle during the final 1300 km migration of wild sockeye salmon to their spawning grounds in the Fraser River, British Columbia. In 2006, Lower Adams stock sockeye salmon ceased feeding after passing the Queen Charlotte Islands, 850 km from the Fraser River. Enhanced protein turnover and reduced transcription of actin, muscle contractile and heme-related proteins were early starvation responses in saltwater. Arrival to the estuarine environment triggered massive protein turnover through induction of proteasomal and lysosomal proteolysis and protein biosynthesis, and a shift from anaerobic glycolysis to oxidative phosphorylation. Response to entry into freshwater was modest, with up-regulation of heat shock proteins and nitric oxide biosynthesis. High river temperatures resulted in a strong defense/immune response and high mortalities in 50% of fish. Arrival to the spawning grounds triggered further up-regulation of oxidative phosphorylation and proteolysis, down-regulation of protein biosynthesis and helicase activity, and continued down-regulation of muscle proteins and most glycolytic enzymes. However, sharp up-regulation of PFK-I indicated induction of glycolytic potential at the spawning grounds. The identification of potential environmental cues triggering genome-wide transcriptional shifts in white muscle associated with migration and the strong activation of proteasomal proteolysis were both novel findings.


Transactions of The American Fisheries Society | 2001

Evaluation and Application of Microsatellite and Major Histocompatibility Complex Variation for Stock Identification of Coho Salmon in British Columbia

Terry D. Beacham; John R. Candy; K. Janine Supernault; Tobi Ming; Bruce Deagle; Angela D. Schulze; Debra Tuck; Karia H. Kaukinen; James R. Irvine; Kristina M. Miller; Ruth E. Withler

Abstract Variation at eight microsatellite loci and two linked exons of a major histocompatibility complex (MHC) locus was surveyed in approximately 21,000 coho salmon Oncorhynchus kisutch sampled from 138 localities ranging from southeast Alaska to the Columbia River, the majority of the sites being in British Columbia. The observed regional population structure enabled evaluation of the utility of using microsatellite and MHC variation for estimating the stock composition of coho salmon in mixed-stock fisheries. Both MHC exons were more effective for stock identification than any of the eight microsatellite loci examined. The two MHC exons combined were nearly as effective, on average, as the eight microsatellite loci combined. Some loci were particularly effective at discriminating stocks from specific regions. Mixed-stock analysis provided accurate estimates of contributions from the threatened Thompson River and upper Skeena River stocks, even when they composed less than 5% of the sampled fish. From...


Ecological Applications | 2009

Development and application of DNA techniques for validating and improving pinniped diet estimates

Dominic J. Tollit; Angela D. Schulze; Andrew W. Trites; Peter F. Olesiuk; Susan J. Crockford; Thomas S. Gelatt; Rolf R. Ream; Kristina M. Miller

Polymerase chain reaction techniques were developed and applied to identify DNA from >40 species of prey contained in fecal (scat) soft-part matrix collected at terrestrial sites used by Steller sea lions (Eumetopias jubatus) in British Columbia and the eastern Aleutian Islands, Alaska. Sixty percent more fish and cephalopod prey were identified by morphological analyses of hard parts compared with DNA analysis of soft parts (hard parts identified higher relative proportions of Ammodytes sp., Cottidae, and certain Gadidae). DNA identified 213 prey occurrences, of which 75 (35%) were undetected by hard parts (mainly Salmonidae, Pleuronectidae, Elasmobranchii, and Cephalopoda), and thereby increased species occurrences by 22% overall and species richness in 44% of cases (when comparing 110 scats that amplified prey DNA). Prey composition was identical within only 20% of scats. Overall, diet composition derived from both identification techniques combined did not differ significantly from hard-part identification alone, suggesting that past scat-based diet studies have not missed major dietary components. However, significant differences in relative diet contributions across scats (as identified using the two techniques separately) reflect passage rate differences between hard and soft digesta material and highlight certain hypothesized limitations in conventional morphological-based methods (e.g., differences in resistance to digestion, hard part regurgitation, partial and secondary prey consumption), as well as potential technical issues (e.g., resolution of primer efficiency and sensitivity and scat subsampling protocols). DNA analysis of salmon occurrence (from scat soft-part matrix and 238 archived salmon hard parts) provided species-level taxonomic resolution that could not be obtained by morphological identification and showed that Steller sea lions were primarily consuming pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Notably, DNA from Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers.


Molecular Ecology | 2011

Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration

Tyler G. Evans; Edd Hammill; Karia H. Kaukinen; Angela D. Schulze; David Patterson; Karl K. English; Janelle M. R. Curtis; Kristina M. Miller

Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad‐scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species.


PLOS ONE | 2017

Heart and skeletal muscle inflammation (HSMI) disease diagnosed on a British Columbia salmon farm through a longitudinal farm study

Emiliano Di Cicco; Hugh W. Ferguson; Angela D. Schulze; Karia H. Kaukinen; Shaorong Li; Raphaël Vanderstichel; Øystein Wessel; Espen Rimstad; Ian A. Gardner; K. Larry Hammell; Kristina M. Miller

Heart and skeletal muscle inflammation (HSMI) is an emerging disease of marine-farmed Atlantic Salmon (Salmo salar), first recognized in 1999 in Norway, and later also reported in Scotland and Chile. We undertook a longitudinal study involving health evaluation over an entire marine production cycle on one salmon farm in British Columbia (Canada). In previous production cycles at this farm site and others in the vicinity, cardiac lesions not linked to a specific infectious agent or disease were identified. Histologic assessments of both live and moribund fish samples collected at the farm during the longitudinal study documented at the population level the development, peak, and recovery phases of HSMI. The fish underwent histopathological evaluation of all tissues, Twort’s Gram staining, immunohistochemistry, and molecular quantification in heart tissue of 44 agents known or suspected to cause disease in salmon. Our analysis showed evidence of HSMI histopathological lesions over an 11-month timespan, with the prevalence of lesions peaking at 80–100% in sampled fish, despite mild clinical signs with no associated elevation in mortalities reported at the farm level. Diffuse mononuclear inflammation and myodegeneration, consistent with HSMI, was the predominant histologic observation in affected heart and skeletal muscle. Infective agent monitoring identified three agents at high prevalence in salmon heart tissue, including Piscine orthoreovirus (PRV), and parasites Paranucleospora theridion and Kudoa thyrsites. However, PRV alone was statistically correlated with the occurrence and severity of histopathological lesions in the heart. Immunohistochemical staining further localized PRV throughout HSMI development, with the virus found mainly within red blood cells in early cases, moving into the cardiomyocytes within or, more often, on the periphery of the inflammatory reaction during the peak disease, and reducing to low or undetectable levels later in the production cycle. This study represents the first longitudinal assessment of HSMI in a salmon farm in British Columbia, providing new insights on the pathogenesis of the disease.


Genes | 2017

The Genome of the Beluga Whale (Delphinapterus leucas)

Steven J.M. Jones; Gregory Taylor; Simon K. Chan; René L. Warren; S. Hammond; Steven Bilobram; Gideon J. Mordecai; Curtis A. Suttle; Kristina M. Miller; Angela D. Schulze; Amy M. Chan; Samantha Jones; Kane Tse; Irene Li; Dorothy Cheung; Karen Mungall; Caleb Choo; Adrian Ally; Noreen Dhalla; Angela Tam; Armelle Troussard; Heather Kirk; Pawan Pandoh; Daniel Paulino; Robin Coope; Andrew J. Mungall; Richard G. Moore; Yongjun Zhao; Inanc Birol; Yussanne Ma

The beluga whale is a cetacean that inhabits arctic and subarctic regions, and is the only living member of the genus Delphinapterus. The genome of the beluga whale was determined using DNA sequencing approaches that employed both microfluidic partitioning library and non-partitioned library construction. The former allowed for the construction of a highly contiguous assembly with a scaffold N50 length of over 19 Mbp and total reconstruction of 2.32 Gbp. To aid our understanding of the functional elements, transcriptome data was also derived from brain, duodenum, heart, lung, spleen, and liver tissue. Assembled sequence and all of the underlying sequence data are available at the National Center for Biotechnology Information (NCBI) under the Bioproject accession number PRJNA360851A.


arXiv: Cell Behavior | 2018

The same strain of Piscine orthoreovirus (PRV-1) is involved in the development of different, but related, diseases in Atlantic and Pacific Salmon in British Columbia

Emiliano Di Cicco; Hugh W. Ferguson; Karia H. Kaukinen; Angela D. Schulze; Shaorong Li; Amy Tabata; Oliver P. Günther; Gideon J. Mordecai; Curtis A. Suttle; Kristina M. Miller

Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar Linnaeus, 1758). Given its high prevalence in net pen salm...


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2018

Transcriptional shifts during juvenile Coho salmon (Oncorhynchus kisutch) life stage changes in freshwater and early marine environments

Aimee Lee S. Houde; Angela D. Schulze; Karia H. Kaukinen; Jeffrey Strohm; David Patterson; Terry D. Beacham; Anthony P. Farrell; Scott G. Hinch; Kristina M. Miller

There is a paucity of information on the physiological changes that occur over the course of salmon early marine migration. Here we aim to provide insight on juvenile Coho salmon (Oncorhynchus kisutch) physiology using the changes in gene expression (cGRASP 44K microarray) of four tissues (brain, gill, muscle, and liver) across the parr to smolt transition in freshwater and through the first eight months of ocean residence. We also examined transcriptome changes with body size as a covariate. The strongest shift in the transcriptome for brain, gill, and muscle occurred between summer and fall in the ocean, representing physiological changes that we speculate may be associated with migration preparation to feeding areas. Metabolic processes in the liver were positively associated with body length, generally consistent with enhanced feeding opportunities. However, a notable exception to this metabolic pattern was for spring post-smolts sampled soon after entry into the ocean, which showed a pattern of gene expression more likely associated with depressed feeding or recent fasting. Overall, this study has revealed life stages that may be the most critical developmentally (fall post-smolt) and for survival (spring post-smolt) in the early marine environment. These life stages may warrant further investigation.

Collaboration


Dive into the Angela D. Schulze's collaboration.

Top Co-Authors

Avatar

Kristina M. Miller

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Karia H. Kaukinen

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

David Patterson

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Shaorong Li

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Ruth E. Withler

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Tobi J. Ming

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Amy Tabata

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norma Ginther

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Scott G. Hinch

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge