Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Jeanes is active.

Publication


Featured researches published by Angela Jeanes.


Oncogene | 2008

Cadherins and cancer: how does cadherin dysfunction promote tumor progression?

Angela Jeanes; Cara J. Gottardi; Alpha S. Yap

It has long been recognized that the cell–cell adhesion receptor, E-cadherin, is an important determinant of tumor progression, serving as a suppressor of invasion and metastasis in many contexts. Yet how the loss of E-cadherin function promotes tumor progression is poorly understood. In this review, we focus on three potential underlying mechanisms: the capacity of E-cadherin to regulate β-catenin signaling in the canonical Wnt pathway; its potential to inhibit mitogenic signaling through growth factor receptors and the possible links between cadherins and the molecular determinants of epithelial polarity. Each of these potential mechanisms provides insights into the complexity that is likely responsible for the tumor-suppressive action of E-cadherin.


Oncogene | 2008

Gab2 and Src co-operate in human mammary epithelial cells to promote growth factor independence and disruption of acinar morphogenesis

Haley L. Bennett; Tilman Brummer; Angela Jeanes; Alpha S. Yap; Roger J. Daly

The Gab2 docking protein is a target of several oncogenic protein tyrosine kinases and potentiates activation of the Ras/extracellular signal regulated kinase and phosphatidylinositol 3-kinase (PI3-kinase) pathways. Since Gab2 is phosphorylated by c-Src, and both proteins are overexpressed in breast cancers, we have determined the biological consequences of their co-expression in the immortalized human mammary epithelial cell line MCF-10A. While overexpression of c-Src did not affect acinar morphogenesis or growth factor dependence in three-dimensional culture, c-Src co-operated with Gab2 to promote epidermal growth factor (EGF)-independent acinar growth. In contrast, expression of v-Src or the activated mutant c-SrcY527F led to a spectrum of aberrant phenotypes ranging from spheroids with incomplete luminal clearance to highly disrupted, dispersed structures. Gab2 co-expression shifted the phenotypic distribution towards the dispersed phenotype, an effect not observed with a Gab2 mutant unable to bind the p85 subunit of PI3-kinase (Gab2Δp85). In v-Src-expressing cells, Gab2, but not Gab2Δp85, significantly decreased E-cadherin adhesive strength without altering its surface expression. Gab2 associated with E-cadherin in the presence and absence of v-Src, indicating that the ability of Gab2 to weaken the strength of cell–cell contacts may reflect enhanced activation of PI3-kinase at adherens junctions. Gab2 also increased migration and invasion of these cells in transwell assays, but these effects were p85-independent. Overall, these findings demonstrate a novel mechanism whereby Gab2 may promote metastatic spread and indicate that Gab2 may play several roles during breast cancer progression.


PLOS ONE | 2010

The SNX-PX-BAR family in macropinocytosis: The regulation of macropinosome formation by SNX-PX-BAR proteins

Jack T. H. Wang; Markus C. Kerr; S. M. Karunaratne; Angela Jeanes; Alpha S. Yap; Rohan D. Teasdale

Background Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. Methodology/Principal Findings We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/−3.19 macropinosomes), SNX5 (36.99+/−4.48 macropinosomes), SNX9 (37.55+/−2.4 macropinosomes), SNX18 (88.2+/−8 macropinosomes), SNX33 (65.25+/−6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/−1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P3 levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/−7.13 and 91.4+/−6.37 macropinosomes respectively (p<0.05). Conclusions/Significance SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P3 levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.


Journal of Immunology | 2013

C5a Receptor Signaling Prevents Folate Deficiency–Induced Neural Tube Defects in Mice

Kerina J. Denny; Liam G. Coulthard; Angela Jeanes; Steven Lisgo; David G. Simmons; Leonie K. Callaway; Bogdan J. Wlodarczyk; Richard H. Finnell; Trent M. Woodruff; Stephen Taylor

The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid–deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.


Birth Defects Research Part A-clinical and Molecular Teratology | 2013

Neural Tube Defects, Folate, and Immune Modulation

Kerina J. Denny; Angela Jeanes; Kristin Fathe; Richard H. Finnell; Stephen M. Taylor; Trent M. Woodruff

Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.


Journal of Molecular Histology | 2009

Phosphatidylinositol 3'-kinase signalling supports cell height in established epithelial monolayers.

Angela Jeanes; Michael Smutny; Joanne M. Leerberg; Alpha S. Yap

Cell–cell interactions influence epithelial morphogenesis through an interplay between cell adhesion, trafficking and the cytoskeleton. These cellular processes are coordinated, often by cell signals found at cell–cell contacts. One such contact-based signal is the phosphatidylinositol 3′-kinase (PI3-kinase; PI3K) pathway. PI3-kinase is best understood for its role in mitogenic signalling, where it regulates cell survival, proliferation and differentiation. Its precise morphogenetic impacts in epithelia are, in contrast, less well-understood. Using phosphoinositide-specific biosensors we confirmed that E-cadherin-based cell–cell contacts are enriched in PIP3, the principal product of PI3-kinase. We then used pharmacologic inhibitors to assess the morphogenetic impact of PI3-kinase in MDCK and MCF7 monolayers. We found that inhibiting PI3-kinase caused a reduction in epithelial cell height that was reversible upon removal of the drugs. This was not attributable to changes in E-cadherin expression or homophilic adhesion. Nor were there detectable changes in cell polarity. While Myosin II has been implicated in regulating keratinocyte height, we found no effect of PI3-kinase inhibition on apparent Myosin II activity; nor did direct inhibition of Myosin II alter epithelial height. Instead, in pursuing signalling pathways downstream of PI3-kinase we found that blocking Rac signalling, but not mTOR, reduced epithelial cell height, as did PI3-kinase inhibition. Overall, our findings suggest that PI3-kinase exerts a major morphogenetic impact in simple cultured epithelia through preservation of cell height. This is independent of potential effects on adhesion or polarity, but may occur through PI3-kinase-stimulated Rac signaling.


The Journal of Neuroscience | 2017

Complement C5aR1 Signaling Promotes Polarization and Proliferation of Embryonic Neural Progenitor Cells through PKCζ.

Liam G. Coulthard; Owen A. Hawksworth; Rui Li; Anushree Balachandran; John D. Lee; Farshid Sepehrband; Nyoman D. Kurniawan; Angela Jeanes; David G. Simmons; Ernst J. Wolvetang; Trent M. Woodruff

The complement system, typically associated with innate immunity, is emerging as a key controller of nonimmune systems including in development, with recent studies linking complement mutations with neurodevelopmental disease. A key effector of the complement response is the activation fragment C5a, which, through its receptor C5aR1, is a potent driver of inflammation. Surprisingly, C5aR1 is also expressed during early mammalian embryogenesis; however, no clearly defined function is ascribed to C5aR1 in development. Here we demonstrate polarized expression of C5aR1 on the apical surface of mouse embryonic neural progenitor cells in vivo and on human embryonic stem cell-derived neural progenitors. We also show that signaling of endogenous C5a during mouse embryogenesis drives proliferation of neural progenitor cells within the ventricular zone and is required for normal brain histogenesis. C5aR1 signaling in neural progenitors was dependent on atypical protein kinase C ζ, a mediator of stem cell polarity, with C5aR1 inhibition reducing proliferation and symmetric division of apical neural progenitors in human and mouse models. C5aR1 signaling was shown to promote the maintenance of cell polarity, with exogenous C5a increasing the retention of polarized rosette architecture in human neural progenitors after physical or chemical disruption. Transient inhibition of C5aR1 during neurogenesis in developing mice led to behavioral abnormalities in both sexes and MRI-detected brain microstructural alterations, in studied males, demonstrating a requirement of C5aR1 signaling for appropriate brain development. This study thus identifies a functional role for C5a–C5aR1 signaling in mammalian neurogenesis and provides mechanistic insight into recently identified complement gene mutations and brain disorders. SIGNIFICANCE STATEMENT The complement system, traditionally known as a controller of innate immunity, now stands as a multifaceted signaling family with a broad range of physiological actions. These include roles in the brain, where complement activation is associated with diseases, including epilepsy and schizophrenia. This study has explored complement regulation of neurogenesis, identifying a novel relationship between the complement activation peptide C5a and the neural progenitor proliferation underpinning formation of the mammalian brain. C5a was identified as a regulator of cell polarity, with inhibition of C5a receptors during embryogenesis leading to abnormal brain development and behavioral deficits. This work demonstrates mechanisms through which dysregulation of complement causes developmental disease and highlights the potential risk of complement inhibition for therapeutic purposes in pregnancy.


Shock | 2016

EPHA4-FC treatment reduces ischemia/reperfusion-induced intestinal injury by inhibiting vascular permeability

Trent M. Woodruff; Mike C. L. Wu; Michael Morgan; Nathan T. Bain; Angela Jeanes; Jeffrey Lipman; Michael J. Ting; Andrew W. Boyd; Stephen M. Taylor; Mark G. Coulthard

ABSTRACT The inflammatory response is characterized by increased endothelial permeability, which permits the passage of fluid and inflammatory cells into interstitial spaces. The Eph/ephrin receptor ligand system plays a role in inflammation through a signaling cascade, which modifies Rho-GTPase activity. We hypothesized that blocking Eph/ephrin signaling using an EphA4-Fc would result in decreased inflammation and tissue injury in a model of ischemia/reperfusion (I/R) injury. Mice undergoing intestinal I/R pretreated with the EphA4-Fc had significantly reduced intestinal injury compared to mice injected with the control Fc. This reduction in I/R injury was accompanied by significantly reduced neutrophil infiltration, but did not affect intestinal inflammatory cytokine generation. Using microdialysis, we identified that intestinal I/R induced a marked increase in systemic vascular leakage, which was completely abrogated in EphA4-Fc-treated mice. Finally, we confirmed the direct role of Eph/ephrin signaling in endothelial leakage by demonstrating that EphA4-Fc inhibited tumor necrosis factor-&agr;–induced vascular permeability in human umbilical vein endothelial cells. This study identifies that Eph/ephrin interaction induces proinflammatory signaling in vivo by inducing vascular leak and neutrophil infiltration, which results in tissue injury in intestinal I/R. Therefore, therapeutic targeting of Eph/ephrin interaction using inhibitors, such as EphA4-Fc, may be a novel method to prevent tissue injury in acute inflammation by influencing endothelial integrity and by controlling vascular leak.


Molecular Immunology | 2015

Co-ordinated expression of innate immune molecules during mouse neurulation.

Angela Jeanes; Liam G. Coulthard; Susanna Mantovani; Kathryn Markham; Trent M. Woodruff

The innate immune system is the first line of defence against pathogens and infection. Recently, it has become apparent that many innate immune factors have roles outside of immunity and there is growing evidence that these factors play important functional roles during the development of a range of model organisms. Several studies have documented developmental expression of individual factors of the toll-like receptor and complement systems, and we recently demonstrated a key role for complement C5a receptor (C5aR1) signalling in neural tube closure in mice. Despite these emerging studies, a comprehensive expression analysis of these molecules in embryonic development is lacking. In the current study, we therefore, examined the expression of key innate immune factors in the early development period of neurulation (7.5-10.5dpc) in mice. We found that complement factor genes were differentially expressed during this period of murine development. Interestingly, the expression patterns we identified preclude activation of the classical and alternative pathways and formation of the membrane attack complex. Additionally, several other classes of innate immune molecules were expressed during the period of neurulation, including toll-like receptors (TLR-2, -3, -4 and -9), receptor for advanced glycation end-products (RAGE), and their signalling adapters (TRAF-4, TRAF-6, TAK-1 and MyD88). Taken together, this study highlights a number of innate immune factors as potential novel players in early embryonic development.


Birth Defects Research Part A-clinical and Molecular Teratology | 2016

Autoantibodies against homocysteinylated protein in a mouse model of folate deficiency-induced neural tube defects

Kerina J. Denny; Christina F. Kelly; Vinod Kumar; Katey L. Witham; Robert M. Cabrera; Richard H. Finnell; Stephen M. Taylor; Angela Jeanes; Trent M. Woodruff

BACKGROUND Periconceptional supplementation with folic acid results in a significant reduction in the incidence of neural tube defects (NTDs). Nonetheless, NTDs remain a leading cause of perinatal morbidity and mortality worldwide, and the mechanism(s) by which folate exerts its protective effects are unknown. Homocysteine is an amino acid that accumulates under conditions of folate-deficiency, and is suggested as a risk factor for NTDs. One proposed mechanism of homocysteine toxicity is its accumulation into proteins in a process termed homocysteinylation. METHODS & RESULTS Herein, we used a folate-deficient diet in pregnant mice to demonstrate that there is: (i) a significant inverse correlation between maternal serum folate levels and serum homocysteine; (ii) a significant positive correlation between serum homocysteine levels and titers of autoantibodies against homocysteinylated protein; and (iii) a significant increase in congenital malformations and NTDs in mice deficient in serum folate. Furthermore, in mice administered the folate-deplete diet before conception, supplementation with folic acid during the gestational period completely rescued the embryos from congenital defects, and resulted in homocysteinylated protein titers at term that are comparable to that of mice administered a folate-replete diet throughout both the pre- and postconception period. These results demonstrate that a low-folate diet that induces NTDs also increases protein homocysteinylation and the subsequent generation of autoantibodies against homocysteinylated proteins. CONCLUSION These data support the hypotheses that homocysteinylation results in neo-self antigen formation under conditions of maternal folate deficiency, and that this process is reversible with folic acid supplementation.

Collaboration


Dive into the Angela Jeanes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liam G. Coulthard

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Alpha S. Yap

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Taylor

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge