Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela K. Spartz is active.

Publication


Featured researches published by Angela K. Spartz.


Proceedings of the National Academy of Sciences of the United States of America | 2011

PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature

Keara A. Franklin; Sang Ho Lee; Dhaval Patel; S. Vinod Kumar; Angela K. Spartz; Chen Gu; Songqing Ye; Peng Yu; Gordon Breen; Jerry D. Cohen; Philip A. Wigge; William M. Gray

At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPOCOTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA (SAUR) genes that are expressed at high temperature in a PIF4-dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature.


Plant Journal | 2012

The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion

Angela K. Spartz; Sang H. Lee; Jonathan P. Wenger; Nathalie Gonzalez; Hironori Itoh; Dirk Inzé; Wendy Ann Peer; Angus S. Murphy; Paul Overvoorde; William M. Gray

The plant hormone auxin controls numerous aspects of plant growth and development by regulating the expression of hundreds of genes. SMALL AUXIN UP RNA (SAUR) genes comprise the largest family of auxin-responsive genes, but their function is unknown. Although prior studies have correlated the expression of some SAUR genes with auxin-mediated cell expansion, genetic evidence implicating SAURs in cell expansion has not been reported. The Arabidopsis SAUR19, SAUR20, SAUR21, SAUR22, SAUR23, and SAUR24 (SAUR19-24) genes encode a subgroup of closely related SAUR proteins. We demonstrate that these SAUR proteins are highly unstable in Arabidopsis. However, the addition of an N-terminal GFP or epitope tag dramatically increases the stability of SAUR proteins. Expression of these stabilized SAUR fusion proteins in Arabidopsis confers numerous auxin-related phenotypes indicative of increased and/or unregulated cell expansion, including increased hypocotyl and leaf size, defective apical hook maintenance, and altered tropic responses. Furthermore, seedlings expressing an artificial microRNA targeting multiple members of the SAUR19-24 subfamily exhibit short hypocotyls and reduced leaf size. Together, these findings demonstrate that SAUR19-24 function as positive effectors of cell expansion. This regulation may be achieved through the modulation of auxin transport, as SAUR gain-of-function and loss-of-function seedlings exhibit increased and reduced basipetal indole-3-acetic acid transport, respectively. Consistent with this possibility, SAUR19-24 proteins predominantly localize to the plasma membrane.


The Plant Cell | 2014

SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis

Angela K. Spartz; Hong Ren; Mee Yeon Park; Kristin N. Grandt; Sang Ho Lee; Angus S. Murphy; Michael R. Sussman; Paul Overvoorde; William M. Gray

This study demonstrates that SMALL AUXIN UP-RNA (SAUR) proteins negatively regulate PP2C-D family phosphatases to modulate the phosphorylation status and activity of plasma membrane H+-ATPases to promote cell expansion. This work provides crucial molecular and genetic support for the decades-old acid growth theory of auxin-mediated cell expansion. The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.


Genes & Development | 2008

Plant hormone receptors: new perceptions

Angela K. Spartz; William M. Gray

Plant growth and development require the integration of a variety of environmental and endogenous signals that, together with the intrinsic genetic program, determine plant form. Central to this process are several growth regulators known as plant hormones or phytohormones. Despite decades of study, only recently have receptors for several of these hormones been identified, revealing novel mechanisms for perceiving chemical signals and providing plant biologists with a much clearer picture of hormonal control of growth and development.


Molecular and Cellular Biology | 2004

SMU-2 and SMU-1, Caenorhabditis elegans Homologs of Mammalian Spliceosome-Associated Proteins RED and fSAP57, Work Together To Affect Splice Site Choice

Angela K. Spartz; Robert K. Herman; Jocelyn E. Shaw

ABSTRACT Mutations in the Caenorhabditis elegans gene smu-2 suppress mec-8 and unc-52 mutations. It has been proposed that MEC-8 regulates the alternative splicing of unc-52 transcripts, which encode the core protein of perlecan, a basement membrane proteoglycan. We show that mutation in smu-2 leads to enhanced accumulation of transcripts that skip exon 17, but not exon 18, of unc-52, which explains our finding that smu-2 mutations suppress the uncoordination conferred by nonsense mutations in exon 17, but not in exon 18, of unc-52. We conclude that smu-2 encodes a ubiquitously expressed nuclear protein that is 40% identical to the human RED protein, a component of purified spliceosomes. The effects of smu-2 mutation on both unc-52 pre-mRNA splicing and the suppression of mec-8 and unc-52 mutant phenotypes are indistinguishable from the effects of mutation in smu-1, a gene that encodes a protein that is 62% identical to human spliceosome-associated protein fSAP57. We provide evidence that SMU-2 protects SMU-1 from degradation in vivo. In vitro and in vivo coimmunoprecipitation experiments indicate that SMU-2 and SMU-1 bind to each other. We propose that SMU-2 and SMU-1 function together to regulate splice site choice in the pre-mRNAs of unc-52 and other genes.


Plant Physiology | 2017

Constitutive Expression of Arabidopsis SMALL AUXIN UP RNA19 ( SAUR19 ) in Tomato Confers Auxin-Independent Hypocotyl Elongation

Angela K. Spartz; Vai S. Lor; Hong Ren; Neil E. Olszewski; Nathan D. Miller; Guosheng Wu; Edgar P. Spalding; William M. Gray

Constitutive expression of SAUR genes increases cell wall extensibility and promotes auxin-independent elongation growth in Arabidopsis and tomato. The plant hormone indole-3-acetic acid (IAA or auxin) mediates the elongation growth of shoot tissues by promoting cell expansion. According to the acid growth theory proposed in the 1970s, auxin activates plasma membrane H+-ATPases (PM H+-ATPases) to facilitate cell expansion by both loosening the cell wall through acidification and promoting solute uptake. Mechanistically, however, this process is poorly understood. Recent findings in Arabidopsis (Arabidopsis thaliana) have demonstrated that auxin-induced SMALL AUXIN UP RNA (SAUR) genes promote elongation growth and play a key role in PM H+-ATPase activation by inhibiting PP2C.D family protein phosphatases. Here, we extend these findings by demonstrating that SAUR proteins also inhibit tomato PP2C.D family phosphatases and that AtSAUR19 overexpression in tomato (Solanum lycopersicum) confers the same suite of phenotypes as previously reported for Arabidopsis. Furthermore, we employ a custom image-based method for measuring hypocotyl segment elongation with high resolution and a method for measuring cell wall mechanical properties, to add mechanistic details to the emerging description of auxin-mediated cell expansion. We find that constitutive expression of GFP-AtSAUR19 bypasses the normal requirement of auxin for elongation growth by increasing the mechanical extensibility of excised hypocotyl segments. In contrast, hypocotyl segments overexpressing a PP2C.D phosphatase are specifically impaired in auxin-mediated elongation. The time courses of auxin-induced SAUR expression and auxin-dependent elongation growth were closely correlated. These findings indicate that induction of SAUR expression is sufficient to elicit auxin-mediated expansion growth by activating PM H+-ATPases to facilitate apoplast acidification and mechanical wall loosening.


European Journal of Pharmacology | 2000

Intrathecal Zn2+ attenuates morphine antinociception and the development of acute tolerance

Alice A. Larson; Katalin J. Kovács; Angela K. Spartz

Vesicular Zn2+, released in the brain and from small dorsal root ganglion neurons, interacts with opioid as well as N-methyl-D-aspartate (NMDA) receptors. We investigated the effect of Zn2+ on morphine antinociception in mice (tail flick assay), as well as acute tolerance and dependence, phenomena associated with NMDA activity. Administered intrathecally (i.t.), Zn2+ inhibited morphine antinociception in a dose-related fashion. Zn2+ also inhibited acute tolerance to morphine antinociception (5 h after 100 mg/kg of morphine). Injection i.t. of di-sodium calcium ethylenediamine tetra acetic acid (Na+Ca2+ EDTA), a chelator of divalent cations, had no effect on analgesia, acute tolerance or acute dependence. However, withdrawal jumps produced by naloxone (1 mg/kg s.c.) in morphine-pellet implanted mice (3 days) were potentiated by injections twice daily of 10 nmol of Na+Ca2+ EDTA, suggesting that endogenous Zn2+ tends to inhibit long-term development of withdrawal. These data suggest that the availability of Zn2+ is an important factor in opioid activity.


PLOS Genetics | 2018

A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis

Hong Ren; Mee Yeon Park; Angela K. Spartz; Jeh Haur Wong; William M. Gray

The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.


Archive | 2011

Growth promoting fusion proteins

Dirk Gustaaf Inzé; Nathalie Gonzalez; William M. Gray; Angela K. Spartz


Archive | 2014

SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H + -ATPases to Promote Cell

Angela K. Spartz; Hong Ren; Mee Yeon; Kristin N. Grandt; Sang Ho Lee; Angus S. Murphy; Michael R. Sussman; Paul Overvoorde; William M. Gray

Collaboration


Dive into the Angela K. Spartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ren

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Ho Lee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mee Yeon Park

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael R. Sussman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge