Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela K. Walker is active.

Publication


Featured researches published by Angela K. Walker.


Molecular metabolism | 2013

Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells

Maja S. Engelstoft; Won-mee Park; Ichiro Sakata; Line Vildbrad Kristensen; Anna Sofie Husted; Sherri Osborne-Lawrence; Paul K Piper; Angela K. Walker; Maria H. Pedersen; Mark K. Nøhr; Jie Pan; Christopher Joseph Sinz; Paul E. Carrington; Taro E. Akiyama; Robert M. Jones; Cong Tang; Kashan Ahmed; Stefan Offermanns; Kristoffer L. Egerod; Jeffrey M. Zigman; Thue W. Schwartz

The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.


Molecular metabolism | 2014

Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin

Qian Wang; Chen Liu; Aki Uchida; Jen Chieh Chuang; Angela K. Walker; Tiemin Liu; Sherri Osborne-Lawrence; Brittany L. Mason; Christina Mosher; Eric D. Berglund; Joel K. Elmquist; Jeffrey M. Zigman

The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreERT2 transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelins orexigenic effects but are sufficient to mediate ghrelins effects on glycemia.


Molecular Psychiatry | 2015

The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis

Angela K. Walker; Phillip D. Rivera; Qian Wang; Jen-Chieh Chuang; Stephanie Tran; Sherri Osborne-Lawrence; Sandi Jo Estill; Ruth Starwalt; Paula Huntington; Lorraine K. Morlock; Jacinth Naidoo; Noelle S. Williams; Joseph M. Ready; Amelia J. Eisch; Andrew A. Pieper; Jeffrey M. Zigman

Augmenting hippocampal neurogenesis represents a potential new strategy for treating depression. Here we test this possibility by comparing hippocampal neurogenesis in depression-prone ghrelin receptor (Ghsr)-null mice to that in wild-type littermates and by determining the antidepressant efficacy of the P7C3 class of neuroprotective compounds. Exposure of Ghsr-null mice to chronic social defeat stress (CSDS) elicits more severe depressive-like behavior than in CSDS-exposed wild-type littermates, and exposure of Ghsr-null mice to 60% caloric restriction fails to elicit antidepressant-like behavior. CSDS resulted in more severely reduced cell proliferation and survival in the ventral dentate gyrus (DG) subgranular zone of Ghsr-null mice than in that of wild-type littermates. Also, caloric restriction increased apoptosis of DG subgranular zone cells in Ghsr-null mice, although it had the opposite effect in wild-type littermates. Systemic treatment with P7C3 during CSDS increased survival of proliferating DG cells, which ultimately developed into mature (NeuN+) neurons. Notably, P7C3 exerted a potent antidepressant-like effect in Ghsr-null mice exposed to either CSDS or caloric restriction, while the more highly active analog P7C3-A20 also exerted an antidepressant-like effect in wild-type littermates. Focal ablation of hippocampal stem cells with radiation eliminated this antidepressant effect, further attributing the P7C3 class antidepressant effect to its neuroprotective properties and resultant augmentation of hippocampal neurogenesis. Finally, P7C3-A20 demonstrated greater proneurogenic efficacy than a wide spectrum of currently marketed antidepressant drugs. Taken together, our data confirm the role of aberrant hippocampal neurogenesis in the etiology of depression and suggest that the neuroprotective P7C3-compounds represent a novel strategy for treating patients with this disease.


The Journal of Comparative Neurology | 2014

Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse

Bharath K. Mani; Angela K. Walker; Eduardo Javier López Soto; Jesica Raingo; Charlotte E. Lee; Mario Perello; Zane B. Andrews; Jeffrey M. Zigman

Growth hormone secretagogue receptor (GHSR) 1a is the only molecularly identified receptor for ghrelin, mediating ghrelin‐related effects on eating, body weight, and blood glucose control, among others. The expression pattern of GHSR within the brain has been assessed previously by several neuroanatomical techniques. However, inherent limitations to these techniques and the lack of reliable anti‐GHSR antibodies and reporter rodent models that identify GHSR‐containing neurons have prevented a more comprehensive functional characterization of ghrelin‐responsive neurons. Here we have systematically characterized the brain expression of an enhanced green fluorescence protein (eGFP) transgene controlled by the Ghsr promoter in a recently reported GHSR reporter mouse. Expression of eGFP in coronal brain sections was compared with GHSR mRNA expression detected in the same sections by in situ hybridization histochemistry. eGFP immunoreactivity was detected in several areas, including the prefrontal cortex, insular cortex, olfactory bulb, amygdala, and hippocampus, which showed no or low GHSR mRNA expression. In contrast, eGFP expression was low in several midbrain regions and in several hypothalamic nuclei, particularly the arcuate nucleus, where robust GHSR mRNA expression has been well‐characterized. eGFP expression in several brainstem nuclei showed high to moderate degrees of colocalization with GHSR mRNA labeling. Further quantitative PCR and electrophysiological analyses of eGFP‐labeled hippocampal cells confirmed faithful expression of eGFP within GHSR‐containing, ghrelin‐responsive neurons. In summary, the GHSR‐eGFP reporter mouse model may be a useful tool for studying GHSR function, particularly within the brainstem and hippocampus; however, it underrepresents GHSR expression in nuclei within the hypothalamus and midbrain. J. Comp. Neurol. 522:3644–3666, 2014.


American Journal of Physiology-endocrinology and Metabolism | 2012

Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells.

Ichiro Sakata; Won Mee Park; Angela K. Walker; Paul K Piper; Jen Chieh Chuang; Sherri Osborne-Lawrence; Jeffrey M. Zigman

The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain.


Physiology & Behavior | 2012

Disruption of cue-potentiated feeding in mice with blocked ghrelin signaling.

Angela K. Walker; Imikomobong E. Ibia; Jeffrey M. Zigman

The peptide hormone ghrelin regulates a variety of eating behaviors. Not only does it potently increase intake of freely-available food, but it also shifts food preference toward diets rich in fat, enhances operant responding for food rewards, and induces conditioned place preference for food rewards. Here, we postulated that ghrelin also enables cue-potentiated feeding, in which eating is enhanced upon presentation of a food-conditioned stimulus. To test this hypothesis, a novel cue-potentiated feeding protocol adapted for use in mice was designed and validated, and then the effects of pharmacologic ghrelin receptor (GHSR) antagonism and GHSR transcriptional blockade (as occurs in GHSR-null mice) were assessed. Sated C57BL/6J mice indeed demonstrated cue-potentiated intake of grain-based pellets specifically upon presentation of a positive conditioned stimulus (CS+) but not a negative conditioned stimulus (CS-). Treatment with a GHSR antagonist blocked potentiated feeding in sated C57BL/6J mice in response to the CS+. In contrast, while GHSR-null mice also lacked a potentiation of feeding specifically in response to the CS+, they displayed an enhanced intake of pellets in response to both the positive and negative conditioned stimuli. The pattern of immediate early gene expression within the basolateral amygdala - a brain region previously linked to cue-potentiated feeding - paralleled the observed behavior of these mice, suggesting uncharacteristic activation of the amygdala in response to negative conditioned stimuli in GHSR-null mice as compared to wild-type littermates. Thus, although the observed disruptions in cue-potentiated feeding are different depending upon whether GHSR activity or GHSR expression is blocked, a key role for GHSRs in establishing a specific positive cue-food association has now been established.


Endocrinology | 2014

Role of calcium and EPAC in norepinephrine-induced ghrelin secretion.

Bharath K. Mani; Jen Chieh Chuang; Lilja Kjalarsdottir; Ichiro Sakata; Angela K. Walker; Anna Kuperman; Sherri Osborne-Lawrence; Joyce J. Repa; Jeffrey M. Zigman

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to β1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca(2+) and cAMP. Several voltage-gated Ca(2+) channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca(2+) levels both in the presence and absence of extracellular Ca(2+). Ca(2+)-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca(2+) influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca(2+). Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.


PLOS ONE | 2013

Characterization of gastric and neuronal histaminergic populations using a transgenic mouse model.

Angela K. Walker; Won Mee Park; Jen Chieh Chuang; Mario Perello; Ichiro Sakata; Sherri Osborne-Lawrence; Jeffrey M. Zigman

Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells.


Nature | 2017

Kctd13 deletion reduces synaptic transmission via increased RhoA

Christine Ochoa Escamilla; Irina Filonova; Angela K. Walker; Zhong X. Xuan; Roopashri Holehonnur; Felipe Espinosa; Shunan Liu; Summer B. Thyme; Isabel A. López-García; Dorian B. Mendoza; Noriyoshi Usui; Jacob Ellegood; Amelia J. Eisch; Genevieve Konopka; Jason P. Lerch; Alexander F. Schier; Haley E. Speed; Craig M. Powell

Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.


PLOS ONE | 2013

Expression of Serum Retinol Binding Protein and Transthyretin within Mouse Gastric Ghrelin Cells

Angela K. Walker; Zhi Yong Gong; Won-mee Park; Jeffrey M. Zigman; Ichiro Sakata

Ghrelin is an orexigenic peptide hormone produced mainly by a distinct group of dispersed endocrine cells located within the gastric oxyntic mucosa. Besides secreted gene products derived from the preproghrelin gene, which include acyl-ghrelin, desacyl-ghrelin and obestatin, ghrelin cells also synthesize the secreted protein nesfatin-1. The main goal of the current study was to identify other proteins secreted from ghrelin cells. An initial gene chip screen using mRNAs derived from highly enriched pools of mouse gastric ghrelin cells demonstrated high levels of serum retinol-binding protein (RBP4) and transthyretin (TTR), both of which are known to circulate in the bloodstream bound to each other. This high expression was confirmed by quantitative RT-PCR using as template mRNA derived from the enriched gastric ghrelin cell pools and from two ghrelin-producing cell lines (SG-1 and PG-1). RBP4 protein also was shown to be secreted into the culture medium of ghrelin cell lines. Neither acute nor chronic caloric restriction had a significant effect on RBP4 mRNA levels within stomachs of C57BL/6J mice, although both manipulations significantly decreased stomach TTR mRNA levels. In vitro studies using PG-1 cells showed no effect on RBP4 release of octanoic acid, epinephrine or norepinephrine, all of which are known to act directly on ghrelin cells to stimulate ghrelin secretion. These data provide new insights into ghrelin cell physiology, and given the known functions of RBP4 and TTR, support an emerging role for the ghrelin cell in blood glucose handling and metabolism.

Collaboration


Dive into the Angela K. Walker's collaboration.

Top Co-Authors

Avatar

Jeffrey M. Zigman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sherri Osborne-Lawrence

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jen Chieh Chuang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amelia J. Eisch

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bharath K. Mani

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig M. Powell

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jen-Chieh Chuang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul K Piper

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qian Wang

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge