Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Mika is active.

Publication


Featured researches published by Angela Mika.


PLOS ONE | 2012

Novel scabies mite serpins inhibit the three pathways of the human complement system.

Angela Mika; Simone L. Reynolds; Frida C. Mohlin; Charlene Willis; Pearl M. Swe; Darren Pickering; Vanja Halilovic; Lakshmi C. Wijeyewickrema; Robert N. Pike; Anna M. Blom; David J. Kemp

Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.


PLOS Neglected Tropical Diseases | 2012

Complement inhibitors from scabies mites promote streptococcal growth--a novel mechanism in infected epidermis?

Angela Mika; Simone L. Reynolds; Darren Pickering; David J. McMillan; Kadaba S. Sriprakash; David J. Kemp

Background Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections. Methodology/Principal Findings GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold. Conclusions/Significance We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.


PLOS Neglected Tropical Diseases | 2011

Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity

Angela Mika; Priscilla Goh; Deborah C. Holt; D. Kemp

Background Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. Methodology/Principal Findings A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. Conclusions/Significance This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut.


Journal of Biological Chemistry | 2009

Characterization of a Serine Protease Homologous to House Dust Mite Group 3 Allergens from the Scabies Mite Sarcoptes scabiei

Simone A. Beckham; Sarah E. Boyd; Simone L. Reynolds; Charlene Willis; Masego Johnstone; Angela Mika; Pavla Simerska; Lakshmi C. Wijeyewickrema; A. Ian Smith; David J. Kemp; Robert N. Pike

The scabies mite, Sarcoptes scabiei var. hominis, infests human skin, causing allergic reactions and facilitating bacterial infection by Streptococcus sp., with serious consequences such as rheumatic fever and rheumatic heart disease. To identify a possible drug target or vaccine candidate protein, we searched for homologues of the group 3 allergen of house dust mites, which we subsequently identified in a cDNA library. The native protein, designated Sar s 3, was shown to be present in the mite gut and excreted in fecal pellets into mite burrows within the upper epidermis. The substrate specificity of proteolytically active recombinant rSar s 3 was elucidated by screening a bacteriophage library. A preference for substrates containing a RS(G/A) sequence at the P1-P2′ positions was revealed. A series of peptides synthesized as internally quenched fluorescent substrates validated the phage display data and high performance liquid chromatography/mass spectrometry analysis of the preferred cleaved substrate and confirmed the predicted cleavage site. Searches of the human proteome using sequence data from the phage display allowed the in silico prediction of putative physiological substrates. Among these were numerous epidermal proteins, with filaggrin being a particularly likely candidate substrate. We showed that recombinant rSar s 3 cleaves human filaggrin in vitro and obtained immunohistological evidence that the filaggrin protein is ingested by the mite. This is the first report elucidating the substrate specificity of Sar s 3 and its potential role in scabies mite biology.


PLOS Neglected Tropical Diseases | 2014

Scabies Mite Inactive Serine Proteases Are Potent Inhibitors of the Human Complement Lectin Pathway

Simone L. Reynolds; Robert N. Pike; Angela Mika; Anna M. Blom; Andreas Hofmann; Lakshmi C. Wijeyewickrema; D. Kemp

Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.


PLOS Neglected Tropical Diseases | 2013

Detection of Serotype-Specific Antibodies to the Four Dengue Viruses Using an Immune Complex Binding (ICB) ELISA

Petra Emmerich; Angela Mika; Herbert Schmitz

Background Dengue virus (DENV) infections are preferentially diagnosed by detection of specific IgM antibodies, DENV NS1 antigen assays or by amplification of viral RNA in serum samples of the patients. The type-specific immunity to the four worldwide circulating DENV serotypes can be determined by neutralization assays. An alternative to the complicated neutralization assays would be helpful to study the serotype-specific immune response in people in DENV hyperendemic areas but also in subjects upon DENV vaccination. Methods In consecutive samples of patients with DENV-1- 4 infection type-specific antibodies were detected using an immune complex binding (ICB) ELISA. During incubation of serum samples and enzyme- labeled recombinant envelope domain III (EDIII) antigens immune complexes (ICs) are formed, which are simultaneously bound to a solid phase coated with an Fc–receptor (CD32). After a single washing procedure the bound labeled ICs can be determined. To further improve type-specific reactions high concentrations of competing heterologous unlabeled ED III proteins were added to the labeled antigens. Results Follow-up serum samples of 64 patients with RT-PCR confirmed primary DENV-1, -2, -3 or -4 infections were tested against four enzyme-labeled recombinant DENV EDIII antigens. Antibodies to the EDIII antigens were found in 55 patients (sensitivity 86%). A complete agreement between the serotype detected by PCR in early samples and the serotype-specific antibody in later samples was found. Type-specific anti-EDIII antibodies were first detected 9–20 days after onset of the disease. In 21% of the samples collected from people in Vietnam secondary infections with antibodies to two serotypes could be identified. Conclusions The data obtained with the ICB-ELISA show that after primary DENV infection the corresponding type-specific antibodies are detected in almost all samples collected at least two weeks after onset of the disease. The method will be of value to determine the distribution of the various type-specific anti–DENV antibodies in DENV endemic areas.


PLOS Neglected Tropical Diseases | 2018

Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)—Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests

Petra Emmerich; Angela Mika; Ronald von Possel; Anne Rackow; Yang Liu; Herbert Schmitz; Stephan Günther; Kurtesh Sherifi; Barie Halili; Xhevat Jakupi; Lindita Berisha; Salih Ahmeti; Christina Deschermeier

As the most widespread tick-borne arbovirus causing infections in numerous countries in Asia, Africa and Europe, Crimean-Congo Hemorrhagic Fever Virus (CCHFV, family Nairoviridae) was included in the WHO priority list of emerging pathogens needing urgent Research & Development attention. To ensure preparedness for potential future outbreak scenarios, reliable diagnostic tools for identification of acute cases as well as for performance of seroprevalence studies are necessary. Here, the CCHFV ortholog of the major bunyavirus antigen, the nucleoprotein (NP), was recombinantly expressed in E.coli, purified and directly labeled with horseradish peroxidase (HRP). Employing this antigen, two serological tests, a μ-capture ELISA for the detection of CCHFV-specific IgM antibodies (BLACKBOX CCHFV IgM) and an IgG immune complex (IC) ELISA for the detection of CCHFV-specific IgG antibodies (BLACKBOX CCHFV IgG), were developed. Test performance was evaluated and compared with both in-house gold standard testing by IgM/IgG indirect immunofluorescence (IIF) and commercially available ELISA tests (VectoCrimean-CHF-IgM/IgG, Vector-Best, Russia) using a serum panel comprising paired samples collected in Kosovo during the years 2013–2016 from 15 patients with an acute, RT-PCR-confirmed CCHFV infection, and 12 follow-up sera of the same patients collected approximately one year after having overcome the infection. Reliably detecting IgM antibodies in all acute phase sera collected later than day 4 after onset of symptoms, both IgM ELISAs displayed excellent diagnostic and analytical sensitivity (100%, 95% confidence interval (CI): 85.2%–100.0%). While both IgG ELISAs readily detected the high IgG titers present in convalescent patients approximately one year after having overcome the infection (sensitivity 100%, 95% CI: 73.5%–100.0%), the newly developed BLACKBOX CCHFV IgG ELISA was superior to the commercial IgG ELISA in detecting the rising IgG titers during the acute phase of the disease. While all samples collected between day 11 and 19 after onset of symptoms tested positive in both the in-house gold standard IIFT and the BLACKBOX CCHFV IgG ELISA (sensitivity 100%, 95% CI: 71.5%–100.0%), only 27% (95% CI: 6.0%–61.0%) of those samples were tested positive in the commercial IgG ELISA. No false positive signals were observed in either IgM/IgG ELISA when analyzing a priori CCHFV IgM/IgG negative serum samples from healthy blood donors, malaria patients and flavivirus infected patients as well as CCHFV IgM/IgG IIFT negative serum samples from healthy Kosovar blood donors (for BLACKBOX CCHFV IgM/IgG: n = 218, 100% specificity, 95% CI: 98.3%–100.0%, for VectoCrimean-CHF-IgM/IgG: n = 113, 100% specificity, 95% CI: 96.8%–100.0%).


Molecular Immunology | 2009

Complement evasion of the scabies mite Sarcoptes scabiei

Frida C. Mohlin; Simone L. Reynolds; Charlene Willis; Masego Johnstone; Angela Mika; C. Langendorf; Ashley M. Buckle; R. N. Pike; Anna M. Blom; D. Kemp


Molecular Immunology | 2013

Lectin pathway inhibition by parasitic scabies mites: Molecular characterisation of host–pathogen immune mechanisms

Simone L. Reynolds; Angela Mika; Robert N. Pike; Anna M. Blom; D. Kemp


Molecular Immunology | 2011

Anti-complement activity of scabies mite serine proteases

Simone L. Reynolds; Frida Bergström; Angela Mika; Robert N. Pike; Anna M. Blom; D. Kemp

Collaboration


Dive into the Angela Mika's collaboration.

Top Co-Authors

Avatar

Simone L. Reynolds

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

D. Kemp

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlene Willis

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Darren Pickering

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David J. Kemp

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Herbert Schmitz

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Petra Emmerich

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

David J. McMillan

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge