Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone L. Reynolds is active.

Publication


Featured researches published by Simone L. Reynolds.


Journal of Immunology | 2009

Scabies mite inactivated serine protease paralogs inhibit the human complement system.

Frida Bergström; Simone L. Reynolds; Masego Johnstone; Robert N. Pike; Ashley M. Buckle; David J. Kemp; Anna M. Blom

Infestation of skin by the parasitic itch mite Sarcoptes scabiei afflicts 300 million people worldwide and there is a need for novel and efficient therapies. We have previously identified a multigene family of serine proteases comprising multiple catalytically inactive members (scabies mite-inactivated protease paralogs (SMIPPs)), which are secreted into the gut of S. scabiei. SMIPPs are located in the mite gut and in feces excreted into the upper epidermis. Scabies mites feed on epidermal protein, including host plasma; consequently, they are exposed to host defense mechanisms both internally and externally. We found that two recombinantly expressed SMIPPs inhibited all three pathways of the human complement system. Both SMIPPs exerted their inhibitory action due to binding of three molecules involved in the three different mechanisms which initiate complement: C1q, mannose-binding lectin, and properdin. Both SMIPPs bound to the stalk domains of C1q, possibly displacing or inhibiting C1r/C1s, which are associated with the same domain. Furthermore, we found that binding of both SMIPPs to properdin resulted in prevention of assembly of the alternative pathway convertases. However, the SMIPPs were not able to dissociate already formed convertases. Immunohistochemical staining demonstrated the presence of C1q in the gut of scabies mites in skin burrows. We propose that SMIPPs minimize complement-mediated gut damage and thus create a favorable environment for the scabies mites.


PLOS ONE | 2012

Novel scabies mite serpins inhibit the three pathways of the human complement system.

Angela Mika; Simone L. Reynolds; Frida C. Mohlin; Charlene Willis; Pearl M. Swe; Darren Pickering; Vanja Halilovic; Lakshmi C. Wijeyewickrema; Robert N. Pike; Anna M. Blom; David J. Kemp

Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.


PLOS Neglected Tropical Diseases | 2012

Complement inhibitors from scabies mites promote streptococcal growth--a novel mechanism in infected epidermis?

Angela Mika; Simone L. Reynolds; Darren Pickering; David J. McMillan; Kadaba S. Sriprakash; David J. Kemp

Background Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections. Methodology/Principal Findings GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold. Conclusions/Significance We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.


Journal of Biological Chemistry | 2009

Characterization of a Serine Protease Homologous to House Dust Mite Group 3 Allergens from the Scabies Mite Sarcoptes scabiei

Simone A. Beckham; Sarah E. Boyd; Simone L. Reynolds; Charlene Willis; Masego Johnstone; Angela Mika; Pavla Simerska; Lakshmi C. Wijeyewickrema; A. Ian Smith; David J. Kemp; Robert N. Pike

The scabies mite, Sarcoptes scabiei var. hominis, infests human skin, causing allergic reactions and facilitating bacterial infection by Streptococcus sp., with serious consequences such as rheumatic fever and rheumatic heart disease. To identify a possible drug target or vaccine candidate protein, we searched for homologues of the group 3 allergen of house dust mites, which we subsequently identified in a cDNA library. The native protein, designated Sar s 3, was shown to be present in the mite gut and excreted in fecal pellets into mite burrows within the upper epidermis. The substrate specificity of proteolytically active recombinant rSar s 3 was elucidated by screening a bacteriophage library. A preference for substrates containing a RS(G/A) sequence at the P1-P2′ positions was revealed. A series of peptides synthesized as internally quenched fluorescent substrates validated the phage display data and high performance liquid chromatography/mass spectrometry analysis of the preferred cleaved substrate and confirmed the predicted cleavage site. Searches of the human proteome using sequence data from the phage display allowed the in silico prediction of putative physiological substrates. Among these were numerous epidermal proteins, with filaggrin being a particularly likely candidate substrate. We showed that recombinant rSar s 3 cleaves human filaggrin in vitro and obtained immunohistological evidence that the filaggrin protein is ingested by the mite. This is the first report elucidating the substrate specificity of Sar s 3 and its potential role in scabies mite biology.


Parasite Immunology | 2014

Parasitic scabies mites and associated bacteria joining forces against host complement defence

Pearl M. Swe; Simone L. Reynolds

Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life‐threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro‐environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co‐infections.


PLOS Neglected Tropical Diseases | 2014

Scabies Mite Inactive Serine Proteases Are Potent Inhibitors of the Human Complement Lectin Pathway

Simone L. Reynolds; Robert N. Pike; Angela Mika; Anna M. Blom; Andreas Hofmann; Lakshmi C. Wijeyewickrema; D. Kemp

Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.


Biochemical Journal | 2015

Pseudoproteases: mechanisms and function

Simone L. Reynolds

Catalytically inactive enzymes (also known as pseudoproteases, protease homologues or paralogues, non-peptidase homologues, non-enzymes and pseudoenzymes) have traditionally been hypothesized to act as regulators of their active homologues. However, those that have been characterized demonstrate that inactive enzymes have an extensive and expanding role in biological processes, including regulation, inhibition and immune modulation. With the emergence of each new genome, more inactive enzymes are being identified, and their abundance and potential as therapeutic targets has been realized. In the light of the growing interest in this emerging field the present review focuses on the classification, structure, function and mechanism of inactive enzymes. Examples of how inactivity is defined, how this is reflected in the structure, functions of inactive enzymes in biological processes and their mode of action are discussed.


Cell and Tissue Research | 2013

Intestinal proteases of free-living and parasitic astigmatid mites.

Deborah C. Holt; Stewart Tg Burgess; Simone L. Reynolds; Wajahat Mahmood

Among arthropod pests, mites are responsible for considerable damage to crops, humans and other animals. However, detailed physiological data on these organisms remain sparse, mainly because of their small size but possibly also because of their extreme diversity. Focusing on intestinal proteases, we draw together information from three distinct mite species that all feed on skin but have separately adapted to a free-living, a strictly ecto-parasitic and a parasitic lifestyle. A wide range of studies involving immunohistology, molecular biology, X-ray crystallography and enzyme biochemistry of mite gut proteases suggests that these creatures have diverged considerably as house dust mites, sheep scab mites and scabies mites. Each species has evolved a particular variation of a presumably ancestral repertoire of digestive enzymes that have become specifically adapted to their individual environmental requirements.


Parasites & Vectors | 2017

Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets

Deepani D. Fernando; Edward J. Marr; Martha Zakrzewski; Simone L. Reynolds; Stewart T. G. Burgess

BackgroundScabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools.MethodsWe performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi).ResultsWe provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls.ConclusionsA series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.


Archive | 2011

Chapter 4:The Role of Proteolytically Inactive Serine Proteases from Sarcoptes scabiei in Complement Evasion

Simone L. Reynolds

Infestation of skin by the parasitic itch mite Sarcoptes scabiei afflicts 300 million people worldwide, and there is a need for novel and efficient therapies. We have identified a multigene family of serine proteases comprising multiple catalytically inactive members (Scabies Mite Inactivated Protease Paralogues—SMIPP-Ss), which are secreted into the gut of S. scabiei. SMIPPs are located in the mite gut and in feces excreted into the upper epidermis. Scabies mites feed on epidermal protein, including host plasma; consequently, they are exposed to host defense mechanisms both internally and externally. Two recombinantly expressed SMIPP-Ss inhibited all three pathways of the human complement system due to binding of C1q, mannose-binding lectin, and properdin. Immunohistochemical staining demonstrated the presence of C1q in the gut of scabies mites in skin burrows. We propose that SMIPP-Ss minimize complement-mediated gut damage and thus create a favorable environment for the scabies mites.

Collaboration


Dive into the Simone L. Reynolds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Mika

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Kemp

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Charlene Willis

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David J. Kemp

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Darren Pickering

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masego Johnstone

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David J. McMillan

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge