Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Montecalvo is active.

Publication


Featured researches published by Angela Montecalvo.


Blood | 2012

Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes

Angela Montecalvo; Adriana T. Larregina; William J. Shufesky; Donna B. Stolz; Mara L. Sullivan; Jenny M. Karlsson; Catherine J. Baty; Gregory A. Gibson; Geza Erdos; Zhiliang Wang; Jadranka Milosevic; Olga Tkacheva; Sherrie J. Divito; Rick Jordan; James Lyons-Weiler; Simon C. Watkins; Adrian E. Morelli

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Journal of Virology | 2006

Protection of Mice and Poultry from Lethal H5N1 Avian Influenza Virus through Adenovirus-Based Immunization

Wentao Gao; Adam C. Soloff; Xiuhua Lu; Angela Montecalvo; Doan C. Nguyen; Yumi Matsuoka; Paul D. Robbins; David E. Swayne; Ruben O. Donis; Jacqueline M. Katz; Simon M. Barratt-Boyes; Andrea Gambotto

ABSTRACT The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.


Journal of Immunology | 2008

Exosomes As a Short-Range Mechanism to Spread Alloantigen between Dendritic Cells during T Cell Allorecognition

Angela Montecalvo; William J. Shufesky; Donna B. Stolz; Mara G. Sullivan; Zhiliang Wang; Sherrie J. Divito; Glenn D. Papworth; Simon Watkins; Paul D. Robbins; Adriana T. Larregina; Adrian E. Morelli

Exosomes are nanovesicles released by different cell types including dendritic cells (DCs). The fact that exosomes express surface MHC-peptide complexes suggests that they could function as Ag-presenting vesicles or as vehicles to spread allogeneic Ags for priming of anti-donor T cells during elicitation of graft rejection or induction/maintenance of transplant tolerance. We demonstrate that circulating exosomes transporting alloantigens are captured by splenic DCs of different lineages. Internalization of host-derived exosomes transporting allopeptides by splenic DCs leads to activation of anti-donor CD4 T cells by the indirect pathway of allorecognition, a phenomenon that requires DC-derived, instead of exosome-derived, MHC class II molecules. By contrast, allogeneic exosomes are unable to stimulate direct-pathway T cells in vivo. We demonstrate in mice that although graft-infiltrating leukocytes release exosomes ex vivo, they do not secrete enough concentrations of exosomes into circulation to stimulate donor-reactive T cells in secondary lymphoid organs. Instead, our findings indicate that migrating DCs (generated in vitro or isolated from allografts), once they home in the spleen, they transfer exosomes expressing the reporter marker GFP to spleen-resident DCs. Our results suggest that exchange of exosomes between DCs in lymphoid organs might constitute a potential mechanism by which passenger leukocytes transfer alloantigens to recipient’s APCs and amplify generation of donor-reactive T cells following transplantation.


Journal of Immunology | 2009

Suppression of Autoimmune Diabetes by Soluble Galectin-1

Marcelo J. Perone; Suzanne Bertera; William J. Shufesky; Sherrie J. Divito; Angela Montecalvo; Alicia R. Mathers; Adriana T. Larregina; Mabel Pang; Nilufer P. Seth; Kai W. Wucherpfennig; Massimo Trucco; Linda G. Baum; Adrian E. Morelli

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that targets the β-cells of the pancreas. We investigated the ability of soluble galectin-1 (gal-1), an endogenous lectin that promotes T cell apoptosis, to down-regulate the T cell response that destroys the pancreatic β-cells. We demonstrated that in nonobese diabetic (NOD) mice, gal-1 therapy reduces significantly the amount of Th1 cells, augments the number of T cells secreting IL-4 or IL-10 specific for islet cell Ag, and causes peripheral deletion of β-cell-reactive T cells. Administration of gal-1 prevented the onset of hyperglycemia in NOD mice at early and subclinical stages of T1D. Preventive gal-1 therapy shifted the composition of the insulitis into an infiltrate that did not invade the islets and that contained a significantly reduced number of Th1 cells and a higher percentage of CD4+ T cells with content of IL-4, IL-5, or IL-10. The beneficial effects of gal-1 correlated with the ability of the lectin to trigger apoptosis of the T cell subsets that cause β-cell damage while sparing naive T cells, Th2 lymphocytes, and regulatory T cells in NOD mice. Importantly, gal-1 reversed β-cell autoimmunity and hyperglycemia in NOD mice with ongoing T1D. Because gal-1 therapy did not cause major side effects or β-cell toxicity in NOD mice, the use of gal-1 to control β-cell autoimmunity represents a novel alternative for treatment of subclinical or ongoing T1D.


Blood | 2010

Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation

Sherrie J. Divito; Zhiliang Wang; William J. Shufesky; Quan Liu; Olga Tkacheva; Angela Montecalvo; Geza Erdos; Adriana T. Larregina; Adrian E. Morelli

The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro-generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4(+) T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4(+) FoxP3(+) T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.


PLOS ONE | 2009

In Situ-Targeting of Dendritic Cells with Donor-Derived Apoptotic Cells Restrains Indirect Allorecognition and Ameliorates Allograft Vasculopathy

Zhiliang Wang; William J. Shufesky; Angela Montecalvo; Sherrie J. Divito; Adriana T. Larregina; Adrian E. Morelli

Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipients dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipients DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipients quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV.


Immunologic Research | 2011

Regulation of NF-κB induction by TCR/CD28.

Jing Cheng; Angela Montecalvo; Lawrence P. Kane

NF-κB family transcription factors are a common downstream target for inducible transcription mediated by many different cell-surface receptors, especially those receptors involved in inflammation and adaptive immunity. It is now clear that different classes of receptors employ different proximal signaling strategies to activate the common NF-κB signaling components, such as the IKK complex. For antigen receptors expressed by T and B cells, this pathway requires a complex of proteins including the proteins Carma1, Bcl10, and Malt1. Here, we discuss some of what is known about regulation of these proteins downstream of TCR/CD3 and co-stimulatory CD28 signaling. We also discuss another unique aspect of TCR-mediated NF-κB activation, i.e., the spatial restriction imposed on signaling events by the formation of the immunological synapse between a T cell and antigen-presenting cell presenting specific peptide/MHC.


Methods of Molecular Biology | 2013

Methods of Analysis of Dendritic Cell-Derived Exosome-Shuttle MicroRNA and Its Horizontal Propagation Between Dendritic Cells

Angela Montecalvo; Adriana T. Larregina; Adrian E. Morelli

Exosomes are extremely small (<100 nm) membrane vesicles, generated in the endocytic compartment that are released to the extracellular milieu by living cells. Although the biological function of exosomes in vivo remains unclear, they seem to function as mechanisms of cell-to-cell communication for horizontal transfer of proteins, antigens, prions, morphogens, mRNA, and noncoding regulatory RNAs, including microRNAs (miRNAs) (also known as exosome-shuttle miRNAs). Dendritic cells (DCs), the most potent professional antigen-presenting leukocytes of the immune system, release relatively high levels of exosomes and also interact with free exosomes present in the extracellular space. Therefore, DCs constitute a good model for the analysis of exosome-shuttle miRNAs and their horizontal propagation between cells. This chapter provides basic protocols for purification of exosomes released by mouse bone marrow-derived DCs, analysis of their miRNA content, and assessment of the function of exosome-shuttle miRNAs, once they are transferred to target/acceptor DCs.


Methods of Molecular Biology | 2014

Methods of purification of CTL-derived exosomes.

Angela Montecalvo; Adriana T. Larregina; Adrian E. Morelli

Exosomes are membrane nanovesicles (approximately <120 nm in size) released by most, if not all, living cells and in particular by leukocytes. They originate within the endocytic compartment by invagination of the endosome membrane. Therefore, they have a different biogenesis and molecular composition than microvesicles (>0.2 μm) shed from the plasma membrane. Although the functions of exosomes in vivo are beginning to be elucidated, increasing evidence suggests that exosomes constitute a mechanism of cell-to-cell communication, transferring antigens, proteins, mRNAs, and noncoding RNAs among cells. Interestingly, effector T cells including cytotoxic T lymphocytes (CTLs) release death-inducing molecules of the TNF superfamily through exosomes contained in their cytotoxic granules. The present chapter provides basic protocols for purification of exosomes secreted by CTLs.


Molecular Immunology | 2017

Inducible turnover of optineurin regulates T cell activation

Angela Montecalvo; Simon C. Watkins; Jordan S. Orange; Lawrence P. Kane

&NA; Optineurin (Optn) is an adaptor protein with homology to NF‐&kgr;B essential modulator (NEMO), the regulatory subunit of the I&kgr;B kinase (IKK) complex. Dysregulation of Optn has been linked to neurodegenerative, autoimmune and bone diseases. Optn shares a high degree of homology with NEMO, but is not part of the same high‐molecular weight complex containing IKK&agr; and IKK&bgr;. Despite its homology with NEMO and the fact that it has been the subject of extensive study in several cell types, there are no published studies addressing the role of Optn during T cell activation. Here we demonstrate that ectopic expression of Optn down‐regulates TCR‐induced NF‐&kgr;B activation and TNF‐&agr; production, in a manner dependent on ubiquitin‐binding. Conversely, knock‐down of Optn enhances NF‐&kgr;B activation and the production of TNF‐&agr;. Consistent with a negative regulatory role for this protein, we observed transient loss of Optn after TCR stimulation in both cell lines and in primary murine T cells. The acute loss of Optn appears to be due to both protein degradation and exocytosis, the latter via activation‐induced exosomes. This study therefore provides novel information regarding the role of Optn during TCR activation, suggesting the possible importance of Optn during inflammation and/or autoimmune diseases. HighlightsOptineurin (Optn) is expressed in murine and human T cells.Ectopic expression of Optn suppresses TCR‐mediated induction of NF‐&kgr;B and production of TNF‐&agr;.Knock‐down of Optn enhances NF‐&kgr;B induction and TNF‐&agr; production in T cells.T cell activation leads to rapid loss of endogenous Optn protein, through both degradation and exocytosis in microvesicles.

Collaboration


Dive into the Angela Montecalvo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherrie J. Divito

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhiliang Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geza Erdos

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Paul D. Robbins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge