Angele Breithaupt
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angele Breithaupt.
Emerging Infectious Diseases | 2012
Bernd Hoffmann; Matthias Scheuch; Dirk Höper; Ralf Jungblut; Mark Holsteg; Horst Schirrmeier; Michael Eschbaumer; Katja V. Goller; Kerstin Wernike; Melina Fischer; Angele Breithaupt; Thomas C. Mettenleiter; Martin Beer
In 2011, an unidentified disease in cattle was reported in Germany and the Netherlands. Clinical signs included fever, decreased milk production, and diarrhea. Metagenomic analysis identified a novel orthobunyavirus, which subsequently was isolated from blood of affected animals. Surveillance was initiated to test malformed newborn animals in the affected region.
Journal of General Virology | 2009
Elke Lange; Donata Kalthoff; Ulrike Blohm; Jens Peter Teifke; Angele Breithaupt; Christina Maresch; Elke Starick; Sasan R. Fereidouni; Bernd Hoffmann; Thomas C. Mettenleiter; Martin Beer; Thomas W. Vahlenkamp
Influenza virus A/H1N1, which is currently causing a pandemic, contains gene segments with ancestors in the North American and Eurasian swine lineages. To get insights into virus replication dynamics, clinical symptoms and virus transmission in pigs, we infected animals intranasally with influenza virus A/Regensburg/D6/09/H1N1. Virus excretion in the inoculated pigs was detected in nasal swabs from 1 day post-infection (p.i.) onwards and the pigs developed generally mild symptoms, including fever, sneezing, nasal discharge and diarrhoea. Contact pigs became infected, shed virus and developed clinical symptoms similar to those in the inoculated animals. Plasma samples of all animals remained negative for virus RNA. Nucleoprotein- and haemagglutinin H1-specific antibodies could be detected by ELISA 7 days p.i. CD4(+) T cells became activated immediately after infection and both CD4(+) and CD8(+) T-cell populations expanded from 3 to 7 days p.i., coinciding with clinical signs. Contact chickens remained uninfected, as judged by the absence of virus excretion, clinical signs and seroconversion.
PLOS ONE | 2009
Sasan R. Fereidouni; Elke Starick; Martin Beer; Hendrik Wilking; Donata Kalthoff; Christian Grund; Rafaela Häuslaigner; Angele Breithaupt; Elke Lange; Timm C. Harder
The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections.
Emerging Infectious Diseases | 2008
Donata Kalthoff; Angele Breithaupt; Jens Peter Teifke; Anja Globig; Timm C. Harder; Thomas C. Mettenleiter; Martin Beer
Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus–specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.
Emerging Infectious Diseases | 2008
Matthias Giese; Timm C. Harder; Jens Peter Teifke; Robert Klopfleisch; Angele Breithaupt; Thomas C. Mettenleiter; Thomas W. Vahlenkamp
Experiments that exposed influenza virus (H5N1)–infected cats to susceptible dogs did not result in intraspecies or interspecies transmission. Infected dogs showed increased body temperatures, viral RNA in pharyngeal swabs, and seroconversion but not fatal disease.
Emerging Infectious Diseases | 2008
Donata Kalthoff; Angele Breithaupt; Jens Peter Teifke; Anja Globig; Timm C. Harder; Thomas C. Mettenleiter; Martin Beer
Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus–specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.
Journal of Virology | 2009
Olga Stech; Jutta Veits; Siegfried Weber; Daniela Deckers; Diana Schröer; Thomas W. Vahlenkamp; Angele Breithaupt; Jens Peter Teifke; Thomas C. Mettenleiter; Jürgen Stech
ABSTRACT Highly pathogenic avian influenza viruses (HPAIV) differ from all other strains by a polybasic cleavage site in their hemagglutinin. All these HPAIV share the H5 or H7 subtype. In order to investigate whether the acquisition of a polybasic cleavage site by an avirulent avian influenza virus strain with a hemagglutinin other than H5 or H7 is sufficient for immediate transformation into an HPAIV, we adapted the hemagglutinin cleavage site of A/Duck/Ukraine/1/1963 (H3N8) to that of the HPAIV A/Chicken/Italy/8/98 (H5N2), A/Chicken/HongKong/220/97 (H5N1), or A/Chicken/Germany/R28/03 (H7N7) and generated the recombinant wild-type and cleavage site mutants. In contrast to the wild type, multicycle replication of these mutants in tissue culture was demonstrated by positive plaque assays and viral multiplication in the absence of exogenous trypsin. Therefore, in vitro all cleavage site mutants resemble an HPAIV. However, in chicken they did not exhibit high pathogenicity, although they could be reisolated from cloacal swabs to some extent, indicating enhanced replication in vivo. These results demonstrate that beyond the polybasic hemagglutinin cleavage site, the virulence of HPAIV in chicken is based on additional pathogenicity determinants within the hemagglutinin itself or in the other viral proteins. Taken together, these observations support the notion that acquisition of a polybasic hemagglutinin cleavage site by an avirulent strain with a non-H5/H7 subtype is only one among several alterations necessary for evolution into an HPAIV.
Veterinary Microbiology | 2013
Kerstin Wernike; Michael Eschbaumer; Horst Schirrmeier; Ulrike Blohm; Angele Breithaupt; Bernd Hoffmann; Martin Beer
Schmallenberg virus (SBV), a novel orthobunyavirus, was discovered in Germany in 2011. In adult ruminants SBV causes mild transient disease, but foetal infection can lead to severe malformations. Owing to its recent discovery, the knowledge about the pathogenesis is limited. In this study, two heifers seroconverted after a previous SBV infection and five SBV antibody-negative calves were subcutaneously inoculated, another two animals received SBV orally and three were kept as controls. In naïve cattle infected subcutaneously viral RNA was detected in serum and blood samples for several days. Seropositive or orally inoculated animals as well as the uninfected controls remained negative throughout the study. Seroconversion was observed only after subcutaneous exposure of the naïve animals to SBV. In lymphocytes from peripheral blood SBV genome was not detected, but the lymphocyte homeostasis in blood was influenced.
Veterinary Research | 2012
Kerstin Wernike; Michael Eschbaumer; Angele Breithaupt; Bernd Hoffmann; Martin Beer
Schmallenberg virus (SBV), discovered in Europe in 2011, causes mild transient disease in adult ruminants, but fetal infection can lead to severe malformation in cattle, sheep and goats.To elucidate the pathogenesis of this novel orthobunyavirus, considerable efforts are required. A reliable and standardized infection model is essential for in vivo studies. In the present study, two groups of four cattle were inoculated with either serum passaged in cattle only or cell culture-grown virus. The replication of culture-grown SBV in cattle was reduced compared to virus inoculated via infectious serum. In a second experiment, the infectious serum was titrated in calves; the tested batch contained 102.83 infectious doses per mL. Hence, serum-borne virus that was only passaged in the natural host is a suitable option for a standardized SBV infection model.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jutta Veits; Siegfried Weber; Olga Stech; Angele Breithaupt; Marcus Gräber; Sandra Gohrbandt; Jessica Bogs; Jana Hundt; Jens Peter Teifke; Thomas C. Mettenleiter; Jürgen Stech
High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site.