Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelica M. Merlot is active.

Publication


Featured researches published by Angelica M. Merlot.


Frontiers in Physiology | 2014

Unraveling the mysteries of serum albumin—more than just a serum protein

Angelica M. Merlot; Danuta S. Kalinowski; Des R. Richardson

Serum albumin is a multi-functional protein that is able to bind and transport numerous endogenous and exogenous compounds. The development of albumin drug carriers is gaining increasing importance in the targeted delivery of cancer therapy, particularly as a result of the market approval of the paclitaxel-loaded albumin nanoparticle, Abraxane®. Considering this, there is renewed interest in isolating and characterizing albumin-binding proteins or receptors on the plasma membrane that are responsible for albumin uptake. Initially, the cellular uptake and intracellular localization of albumin was unknown due to the large confinement of the protein within the vascular and interstitial compartment of the body. Studies have since assessed the intracellular localization of albumin in order to understand the mechanisms and pathways responsible for its uptake, distribution and catabolism in multiple tissues, and this is reviewed herein.


Biochimica et Biophysica Acta | 2015

Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease.

Darius J.R. Lane; Angelica M. Merlot; Michael Li-Hsuan Huang; Dong-Hun Bae; Patric J. Jansson; Sumit Sahni; Danuta S. Kalinowski; Des R. Richardson

Iron is a crucial transition metal for virtually all life. Two major destinations of iron within mammalian cells are the cytosolic iron-storage protein, ferritin, and mitochondria. In mitochondria, iron is utilized in critical anabolic pathways, including: iron-storage in mitochondrial ferritin, heme synthesis, and iron-sulfur cluster (ISC) biogenesis. Although the pathways involved in ISC synthesis in the mitochondria and cytosol have begun to be characterized, many crucial details remain unknown. In this review, we discuss major aspects of the journey of iron from its initial cellular uptake, its modes of trafficking within cells, to an overview of its downstream utilization in the cytoplasm and within mitochondria. The understanding of mitochondrial iron processing and its communication with other organelles/subcellular locations, such as the cytosol, has been elucidated by the analysis of certain diseases e.g., Friedreichs ataxia. Increased knowledge of the molecules and their mechanisms of action in iron processing pathways (e.g., ISC biogenesis) will shape the investigation of iron metabolism in human health and disease.


Antioxidants & Redox Signaling | 2013

Novel Chelators for Cancer Treatment: Where Are We Now?

Angelica M. Merlot; Danuta S. Kalinowski; Des R. Richardson

SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of iron homeostasis in cancer cells reveals a particular vulnerability to iron-depletion using iron chelators. In this review, we examine the absorption of iron from the gut; its transport, metabolism, and homeostasis in mammals; and the molecular pathways involved. Additionally, evidence for alterations in iron processing in cancer are described along with the perturbations in other biologically important transition metal ions, for example, copper(II) and zinc(II). These changes can be therapeutically manipulated by the use of novel chelators that have recently been shown to be highly effective in terms of inhibiting tumor growth. RECENT ADVANCES Such chelators include those of the thiosemicarbazone class that were originally thought to target only ribonucleotide reductase, but are now known to have multiple effects, including the generation of cytotoxic radicals. CRITICAL ISSUES Several chelators have shown marked anti-tumor activity in vivo against a variety of solid tumors. An important aspect is the toxicology and the efficacy of these agents in clinical trials. FUTURE DIRECTIONS As part of the process of the clinical assessment of the new chelators, an extensive toxicological assessment in multiple animal models is essential for designing appropriate dosing protocols in humans.


Biochimica et Biophysica Acta | 2016

Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics

Danuta S. Kalinowski; Christian Stefani; Shinya Toyokuni; Tomas Ganz; Gregory J. Anderson; N.V. Subramaniam; Debbie Trinder; John K. Olynyk; A. Chua; Patric J. Jansson; Sumit Sahni; Darius J.R. Lane; Angelica M. Merlot; Zaklina Kovacevic; Michael Li-Hsuan Huang; C.S. Lee; Des R. Richardson

Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.


Nutrients | 2015

Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation

Darius J.R. Lane; Dong-Hun Bae; Angelica M. Merlot; Sumit Sahni; Des R. Richardson

Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally, both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake, rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut, ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities, intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes, namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family, duodenal cytochrome b (DCYTB), may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis, the emergent “IRP1-HIF2α axis”, DCYTB and ascorbate in relation to iron metabolism.


Oncotarget | 2015

The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets

Wensheng Liu; Zaklina Kovacevic; Zhihai Peng; Runsen Jin; Puxiongzhi Wang; Fei Yue; Minhua Zheng; Michael L-H. Huang; Patric J. Jansson; Vera Richardson; Danuta S. Kalinowski; Darius J.R. Lane; Angelica M. Merlot; Sumit Sahni; Des R. Richardson

A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.


Journal of Clinical Pathology | 2014

Gene of the month: BECN1

Sumit Sahni; Angelica M. Merlot; Sukriti Krishan; Patric J. Jansson; Des R. Richardson

The BECN1 gene encodes the Beclin-1 protein, which is a well-established regulator of the autophagic pathway. It is a mammalian orthologue of the ATG6 gene in yeast and was one of the first identified mammalian autophagy-associated genes. Beclin-1 interacts with a number of binding partners in the cell which can lead to either activation (eg, via PI3KC3/Vps34, Ambra 1, UV radiation resistance-associated gene) or inhibition (eg, via Bcl-2, Rubicon) of the autophagic pathway. Apart from its role as a regulator of autophagy, it is also shown to effect important biological processes in the cell such as apoptosis and embryogenesis. Beclin-1 has also been implicated to play a critical role in the pathology of a variety of disease states including cancer, neurological disorders (eg, Alzheimers disease, Parkinsons disease) and viral infections. Thus, understanding the functions of Beclin-1 and its interactions with other cellular components will aid in its development as an important therapeutic target for future drug development.


Molecular Pharmacology | 2015

Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: inhibition of constitutive and interleukin 6-induced activation by iron depletion.

Goldie Y. L. Lui; Zaklina Kovacevic; Sharleen V. Menezes; Danuta S. Kalinowski; Angelica M. Merlot; Sumit Sahni; Des R. Richardson

Pharmacologic manipulation of metal pools in tumor cells is a promising strategy for cancer treatment. Here, we reveal how the iron-binding ligands desferrioxamine (DFO), di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibit constitutive and interleukin 6–induced activation of signal transducer and activator of transcription 3 (STAT3) signaling, which promotes proliferation, survival, and metastasis of cancer cells. We demonstrate that DFO, Dp44mT, and DpC significantly decrease constitutive phosphorylation of the STAT3 transcription factor at Tyr705 in the pancreatic cancer cell lines PANC-1 and MIAPaCa-2 as well as the prostate cancer cell line DU145. These compounds also significantly decrease the dimerized STAT3 levels, the binding of nuclear STAT3 to its target DNA, and the expression of downstream targets of STAT3, including cyclin D1, c-myc, and Bcl-2. Examination of upstream mediators of STAT3 in response to these ligands has revealed that Dp44mT and DpC could significantly decrease activation of the nonreceptor tyrosine kinase Src and activation of cAbl in DU145 and MIAPaCa-2 cells. In contrast to the effects of Dp44mT, DpC, or DFO on inhibiting STAT3 activation, the negative control compound di-2-pyridylketone 2-methyl-3-thiosemicarbazone, or the DFO:Fe complex, which cannot bind cellular iron, had no effect. This demonstrates the role of iron-binding in the activity observed. Immunohistochemical staining of PANC-1 tumor xenografts showed a marked decrease in STAT3 in the tumors of mice treated with Dp44mT or DpC compared with the vehicle. Collectively, these studies demonstrate suppression of STAT3 activity by iron depletion in vitro and in vivo, and reveal insights into regulation of the critical oncogenic STAT3 pathway.


Clinical Science | 2016

Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia.

Shannon Chiang; Zaklina Kovacevic; Sumit Sahni; Darius J.R. Lane; Angelica M. Merlot; Danuta S. Kalinowski; Michael L.-H. Huang; Des R. Richardson

The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreichs ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.


Molecular Pharmacology | 2013

Cellular Uptake of the Antitumor Agent Dp44mT Occurs via a Carrier/Receptor-Mediated Mechanism

Angelica M. Merlot; Namfon Pantarat; Sharleen V. Menezes; Sumit Sahni; Des R. Richardson; Danuta S. Kalinowski

The chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) shows potent and selective anticancer and antimetastatic activity. However, the mechanism by which it is initially transported into cells to induce cytotoxicity is unknown. Hence, the current investigation examined the cellular uptake of 14C-Dp44mT relative to two structurally related ligands, namely the aroylhydrazone 14C-pyridoxal isonicotinoyl hydrazone (14C-PIH) and the thiosemicarbazone 14C-2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (14C-Bp4eT). In marked contrast to the cellular uptake of 14C-PIH and 14C-Bp4eT, which were linear as a function of concentration, 14C-Dp44mT uptake was saturable using SK-N-MC neuroepithelioma cells (Bmax, 4.28 × 107 molecules of chelator/cell; and Kd, 2.45 μM). Together with the fact that 14C-Dp44mT uptake was temperature-dependent and significantly (P < 0.01) decreased by competing unlabeled Dp44mT, these observations indicated a saturable transport mechanism consistent with carrier/receptor–mediated transport. Other unlabeled ligands that shared the saturated N4 structural moiety with Dp44mT significantly (P < 0.01) inhibited 14C-Dp44mT uptake, illustrating its importance for carrier/receptor recognition. Nevertheless, unlabeled Dp44mT most markedly decreased 14C-Dp44mT uptake, demonstrating that the putative carrier/receptor shows high selectivity for Dp44mT. Interestingly, in contrast to 14C-Dp44mT, uptake of its Fe complex [Fe(14C-Dp44mT)2] was not saturable as a function of concentration and was much greater than the ligand alone, indicating an alternate mode of transport. Studies examining the tissue distribution of 14C-Dp44mT injected intravenously into a mouse tumor model demonstrated the 14C label was primarily identified in the excretory system. Collectively, these findings examining the mechanism of Dp44mT uptake and its distribution and excretion have clinical implications for its bioavailability and uptake in vivo.

Collaboration


Dive into the Angelica M. Merlot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Yu

University of Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge