Angelika Fretzen
Ironwood Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angelika Fretzen.
Antimicrobial Agents and Chemotherapy | 2006
Stephen P. Saville; Anna L. Lazzell; Alexander P. Bryant; Angelika Fretzen; Alex W. Monreal; Erik O. Solberg; Carlos Monteagudo; Jose L. Lopez-Ribot; G. Todd Milne
ABSTRACT Candida albicans remains the leading causative agent of invasive fungal infection. Although the importance of filamentation in C. albicans pathogenesis has been extensively investigated, in vivo studies to date have been unable to dissect the role of this developmental process in the establishment of infection versus the development of active disease as characterized by damage to the host leading to mortality. To address this issue, we genetically engineered a C. albicans tet-NRG1 strain in which filamentation and virulence can be modulated both in vitro and in vivo simply by the presence or absence of doxycycline (DOX): this strain enabled us, in a prior study, to demonstrate that yeast-form cells were able to infect the deep organs but caused no disease unless filamentation (induced by the addition of DOX) was allowed to occur. In the present study, we examined whether inhibiting filamentation (by withdrawing the DOX) at 24 or 48 h postinfection could serve as an effective therapeutic intervention against candidiasis. The results obtained indicate that DOX removal led to an alteration in the morphology of the infecting fungal cells and a dramatic increase in survival, but as with conventional antifungal drug therapy regimens, mortality rates increased markedly the longer this intervention was delayed. These observations reinforce the importance of invasive filamentous growth in causing the damage to the host and the lethality associated with active disease and suggest this process could be fruitfully targeted for the development of new antifungal agents.
PLOS ONE | 2015
Sheila Ranganath; Ashok Bhandari; Nicole Avitahl-Curtis; Jaimee McMahon; Derek Wachtel; Jenny Zhang; Christopher Leitheiser; Sylvie G. Bernier; Guang Liu; Tran Trung Tran; Herodion Celino; Jenny Tobin; Joon Jung; Hong Zhao; K. E. Glen; Chris Graul; Aliesha Griffin; Wayne C. Schairer; Carolyn S. Higgins; Tammi Reza; Eva Mowe; Sam Rivers; Sonya Scott; Alex W. Monreal; Courtney Shea; Greg T. Bourne; Casey Coons; Adaline Smith; Kim Tang; Ramya A. Mandyam
Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.
Journal of Pharmacology and Experimental Therapeutics | 2015
Boris Tchernychev; Pei Ge; Marco Kessler; Robert Solinga; Derek Wachtel; Jenny Tobin; Sara Thomas; Craig E. Lunte; Angelika Fretzen; Gerhard Hannig; Alexander P. Bryant; Caroline B. Kurtz; Mark G. Currie; Inmaculada Silos-Santiago
MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea.
ACS Medicinal Chemistry Letters | 2016
Takashi Nakai; Nicholas Robert Perl; Timothy C. Barden; Andrew Carvalho; Angelika Fretzen; Peter Germano; G-Yoon Jamie Im; Hong Jin; Charles Kim; Thomas Wai-Ho Lee; Kimberly Long; Joel Moore; Jason Rohde; Renee Sarno; Chrissie Segal; Erik Solberg; Jenny Tobin; Daniel P. Zimmer; Mark G. Currie
In recent years, soluble guanylate cyclase (sGC, EC 4.6.1.2) has emerged as an attractive therapeutic target for treating cardiovascular diseases and diseases associated with fibrosis and end-organ failure. Herein, we describe our design and synthesis of a series of 4-hydroxypyrimidine sGC stimulators starting with an internally discovered lead. Our efforts have led to the discovery of IWP-051, a molecule that achieves good alignment of potency, stability, selectivity, and pharmacodynamic effects while maintaining favorable pharmacokinetic properties with once-daily dosing potential in humans.
Archive | 2004
John Jeffrey Talley; Angelika Fretzen; Craig Zimmerman; Timothy C. Barden; Jing Jing Yang; Eduardo J. Martinez; Robert W. Busby; Etchell A. Cordero; Fariba Houman Cipriano; Christine M. Pierce; Eric Summers
Archive | 2008
Daniel P. Zimmer; Angelika Fretzen; Mark G. Currie; G. Todd Milne
Archive | 2012
Charles Kim; Takashi Nakai; Joel Moore; Nicholas Robert Perl; G-Yoon Jamie Im; Timothy C. Barden; Rajesh R. Iyengar; Daniel P. Zimmer; Angelika Fretzen; Paul Allan Renhowe
Archive | 2010
Angelika Fretzen; Steven Witowski; Alfredo Grossi; Hong Zhao; Mahendra Dedhiya; Yun Mo
Archive | 2009
Angelika Fretzen; Steven Witowski; Alfredo Grossi; Hong Zhao; Mahendra Dedhiya; Yun Mo
Archive | 2012
Angelika Fretzen; Hong Zhao; Marco Kessler