Malgorzata Wachowska
Medical University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malgorzata Wachowska.
Molecules | 2011
Malgorzata Wachowska; Angelika Muchowicz; Malgorzata Firczuk; Magdalena Gabrysiak; Magdalena Winiarska; Malgorzata Wanczyk; Kamil Bojarczuk; Jakub Golab
Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment.
Angiogenesis | 2014
Witold W. Kilarski; Angelika Muchowicz; Malgorzata Wachowska; Renata Mężyk-Kopeć; Jakub Golab; Melody A. Swartz; Patrycja Nowak-Sliwinska
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Central European Journal of Immunology | 2015
Malgorzata Wachowska; Angelika Muchowicz; Urszula Demkow
Photodynamic therapy (PDT) of cancer is an efficient and promising therapeutic modality approved for the treatment of several types of tumors and non-malignant diseases. It involves administration of a non-toxic photosensitizer followed by illumination of the tumor site with a harmless visible light. A light activated photosensitizer can transfer its energy directly to molecular oxygen, leading to production of highly toxic reactive oxygen species (ROS). Antitumor effects of PDT result from the combination of three independent mechanisms involving direct cytotoxicity to tumor cells, destruction of tumor vasculature and induction of the acute local inflammatory response. PDT-mediated inflammatory reaction is accompanied by tumor infiltration of the leukocytes, enhanced production of pro-inflammatory factors and cytokines. Photodynamic therapy is able to effectively stimulate both the innate and the adaptive arm of the immune system. In consequence, this regimen can lead to development of systemic and specific antitumor immune response. However, there are limited studies suggesting that under some specific circumstances, PDT on its own may exert some immunosuppressive effects leading to activation of immunosuppressive cells or cytokines production. In this report we briefly review all immunological aspects of PDT treatment.
Journal of Biological Chemistry | 2012
Magdalena Winiarska; Dominika Nowis; Jacek Bil; Eliza Glodkowska-Mrowka; Angelika Muchowicz; Malgorzata Wanczyk; Kamil Bojarczuk; Michal Dwojak; Malgorzata Firczuk; Ewa Wilczek; Malgorzata Wachowska; Katarzyna Roszczenko; Marta Miaczynska; Justyna Chlebowska; Grzegorz W. Basak; Jakub Golab
Background: The influence of farnesyltransferase inhibitors (FTIs) on CD20 levels is unknown. Results: FTIs increase CD20 expression and improve rituximab-mediated activation of complement-dependent cytotoxicity. Conclusion: FTIs sensitize tumor cells to anti-CD20 mAbs. Significance: The combination of FTIs with anti-CD20 mAbs seems to be a reasonable therapeutic approach worth to be tested in patients with B-cell tumors. Anti-CD20 monoclonal antibodies (mAbs) are successfully used in the management of non-Hodgkin lymphomas and chronic lymphocytic leukemia. We have reported previously that statins induce conformational changes in CD20 molecules and impair rituximab-mediated complement-dependent cytotoxicity. Here we investigated in more detail the influence of farnesyltransferase inhibitors (FTIs) on CD20 expression and antitumor activity of anti-CD20 mAbs. Among all FTIs studied, L-744,832 had the most significant influence on CD20 levels. It significantly increased rituximab-mediated complement-dependent cytotoxicity against primary tumor cells isolated from patients with non-Hodgkin lymphomas or chronic lymphocytic leukemia and increased CD20 expression in the majority of primary lymphoma/leukemia cells. Incubation of Raji cells with L-744,832 led to up-regulation of CD20 at mRNA and protein levels. Chromatin immunoprecipitation assay revealed that inhibition of farnesyltransferase activity was associated with increased binding of PU.1 and Oct-2 to the CD20 promoter sequences. These studies indicate that CD20 expression can be modulated by FTIs. The combination of FTIs with anti-CD20 mAbs is a promising therapeutic approach, and its efficacy should be examined in patients with B-cell tumors.
Frontiers in Oncology | 2015
Malgorzata Wachowska; Angelika Muchowicz; Jakub Golab
Photodynamic therapy (PDT) of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumor and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs) that trigger robust inflammatory response and creates local conditions for effective sampling of tumor-associated antigens (TAA) by antigen-presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumor cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review, we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with PDT can release effective mechanisms leading to development of antitumor immunity and potentiated antitumor effects.
Biochemical Pharmacology | 2015
Angelika Muchowicz; Malgorzata Firczuk; Malgorzata Wachowska; Marek Kujawa; Ewa Jankowska-Steifer; Magdalena Gabrysiak; Zofia Pilch; Szymon Klossowski; Ryszard Ostaszewski; Jakub Golab
Thioredoxins (Trx) together with thioredoxin reductases (TrxR) participate in the maintenance of protein thiol homeostasis and play cytoprotective roles in tumor cells. Therefore, thioredoxin-thioredoxin reductase system is considered to be a promising therapeutic target in cancer treatment. We have previously reported that SK053, a peptidomimetic compound targeting the thioredoxin-thioredoxin reductase system, induces oxidative stress and demonstrates antitumor activity in mice. In this study, we investigated the mechanisms of SK053-mediated tumor cell death. Our results indicate that SK053 induces apoptosis of Raji cells accompanied by the activation of the endoplasmic reticulum (ER) stress and induction of unfolded protein response. Incubation of tumor cells with SK053 induces increase in BiP, CHOP, and spliced XBP-1 levels, which precede induction of apoptosis. CHOP-deficient (CHOP(-/-)) mouse embryonic fibroblasts are more resistant to SK053-induced apoptosis as compared with normal fibroblasts indicating that the apoptosis of tumor cells depends on the expression of this transcription factor. Additionally, the ER-stress-induced apoptosis, caused by SK053, is strongly related with Trx expression levels. Altogether, our results indicate that SK053 induces ER stress-associated apoptosis and reveal a link between thioredoxin inhibition and induction of UPR in tumor cells.
Photodiagnosis and Photodynamic Therapy | 2016
Malgorzata Wachowska; Agata Osiak; Angelika Muchowicz; Magdalena Gabrysiak; Antoni Domagala; Witold W. Kilarski; Jakub Golab
BACKGROUND Photodynamic therapy (PDT) has been shown to induce ablation and functional occlusion of tumor-associated lymphatic vessels. However, direct effects of PDT on lymphatic endothelial cells (LECs) have not been studied so far. The aim of this study was to elucidate molecular mechanisms of cell death induced by PDT in human LECs. METHODS Verteporfin was used as a photosensitizer to investigate PDT-mediated damage of lymphatic vessels in mice using immunofluorescent staining and stereomicroscopy. In vitro dose-response studies were carried-out with crystal violet staining. Immunofluorescence, flow cytometry, immunoblotting and DNA electrophoresis were used to investigate the mechanisms of cell death in human LECs undergoing PDT. RESULTS PDT induced an increase in the number of propidium iodide positive lymphatic endothelial cells in the mouse dermis. In in vitro studies dose-dependent cytotoxic effects of PDT towards LECs were observed. Typical hallmarks of apoptotic cell death, including Annexin V binding, loss of mitochondrial membrane potential, caspase activation, cleavage of PARP as well as DNA fragmentation were observed in LECs when PDT was used at high irradiation conditions, causing >80% cell death. At lower light fluencies causing <50% cell death PDT induced autophagy rather than apoptosis, as revealed by conversion of LC3-I to the autophagosomal LC3-II and formation of LC3 puncta. Z-VAD-FMK, a caspase inhibitor, prevented cell death induced by high-dose PDT only, while 3-methyladenine, an autophagy suppressor, inhibited cell death induced by low-dose PDT. CONCLUSIONS Both apoptosis and autophagy are involved in cell death induced by verteporfin-PDT in LECs.
OncoImmunology | 2014
Malgorzata Wachowska; Magdalena Gabrysiak; Jakub Golab
Photodynamic therapy has been shown to induce strong immunity against tumor cells expressing exogenous tumor-associated antigens (TAAs), including P1A antigen. Cancer cells can evade the immune system by epigenetic silencing of TAAs, while DNA methyltransferase inhibitors, such as 5-aza-2’-deoxycytidine (5-aza-dC) can restore the expression of silenced or downregulated TAA. Thus, epigenetic remodeling with 5-aza-dC combined with PDT can elicit robust and durable antitumor immunity.
OncoImmunology | 2016
Joanna Stachura; Malgorzata Wachowska; Witold W. Kilarski; Esra Güç; Jakub Golab; Angelika Muchowicz
ABSTRACT Lymphatic vasculature plays a crucial role in the immune response, enabling transport of dendritic cells (DCs) and antigens (Ags) into the lymph nodes. Unfortunately, the lymphatic system has also a negative role in the progression of cancer diseases, by facilitating the metastatic spread of many carcinomas to the draining lymph nodes. The lymphatics can promote antitumor immune response as well as tumor tolerance. Here, we review the role of lymphatic endothelial cells (LECs) in tumor progression and immunity and mechanism of action in the newest anti-lymphatic therapies, including photodynamic therapy (PDT).
Oncology Reports | 2016
Magdalena Gabrysiak; Malgorzata Wachowska; Joanna Barankiewicz; Zofia Pilch; Anna Ratajska; Ewa Skrzypek; Magdalena Winiarska; Antoni Domagala; Tomasz Rygiel; Alicja Jozkowicz; Louis Boon; Jakub Golab; Malgorzata Firczuk
Photodynamic therapy (PDT) exerts direct cytotoxic effects on tumor cells, destroys tumor blood and lymphatic vessels and induces local inflammation. Although PDT triggers the release of immunogenic antigens from tumor cells, the degree of immune stimulation is regimen-dependent. The highest immunogenicity is achieved at sub-lethal doses, which at the same time trigger cytoprotective responses, that include increased expression of glucose-regulated protein 78 (GRP78). To mitigate the cytoprotective effects of GRP78 and preserve the immunoregulatory activity of PDT, we investigated the in vivo efficacy of PDT in combination with EGF-SubA cytotoxin that was shown to potentiate in vitro PDT cytotoxicity by inactivating GRP78. Treatment of immunocompetent BALB/c mice with EGF-SubA improved the efficacy of PDT but only when mice were treated with a dose of EGF-SubA that exerted less pronounced effects on the number of T and B lymphocytes as well as dendritic cells in mouse spleens. The observed antitumor effects were critically dependent on CD8+ T cells and were completely abrogated in immunodeficient SCID mice. All these results suggest that GRP78 targeting improves in vivo PDT efficacy provided intact T-cell immune system.