Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angélique Renzaho is active.

Publication


Featured researches published by Angélique Renzaho.


Journal of Virology | 2006

CD8 T Cells Control Cytomegalovirus Latency by Epitope-Specific Sensing of Transcriptional Reactivation

Christian O. Simon; Rafaela Holtappels; Hanna-Mari Tervo; Verena Böhm; Torsten Däubner; Silke A. Oehrlein-Karpi; Birgit Kühnapfel; Angélique Renzaho; Dennis Strand; Jürgen Podlech; Matthias J. Reddehase; Natascha K. A. Grzimek

ABSTRACT During murine cytomegalovirus (mCMV) latency in the lungs, most of the viral genomes are transcriptionally silent at the major immediate-early locus, but rare and stochastic episodes of desilencing lead to the expression of IE1 transcripts. This low-frequency but perpetual expression is accompanied by an activation of lung-resident effector-memory CD8 T cells specific for the antigenic peptide 168-YPHFMPTNL-176, which is derivedfrom the IE1 protein. These molecular and immunological findings were combined in the “silencing/desilencing and immune sensing hypothesis” of cytomegalovirus latency and reactivation. This hypothesis proposes that IE1 gene expression proceeds to cell surface presentation of the IE1 peptide by the major histocompatibility complex (MHC) class I molecule Ld and that its recognition by CD8 T cells terminates virus reactivation. Here we provide experimental evidence in support of this hypothesis. We generated mutant virus mCMV-IE1-L176A, in which the antigenic IE1 peptide is functionally deleted by a point mutation of the C-terminal MHC class I anchor residue Leu into Ala. Two revertant viruses, mCMV-IE1-A176L and the wobble nucleotide-marked mCMV-IE1-A176L*, in which Leu is restored by back-mutation of Ala codon GCA into Leu codons CTA and CTT, respectively, were constructed. Pulmonary latency of the mutant virus was found to be associated with an increased prevalence of IE1 transcription and with events of IE3 transactivator splicing. In conclusion, IE1-specific CD8 T cells recognize and terminate virus reactivation in vivo at the first opportunity in the reactivated gene expression program. The perpetual gene expression and antigen presentation might represent the driving molecular force in CMV-associated immunosenescence.


Medical Microbiology and Immunology | 2012

Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection

Christof K. Seckert; Marion Grießl; Julia K. Büttner; Christian O. Simon; Kai A. Kropp; Angélique Renzaho; Birgit Kühnapfel; Natascha K. A. Grzimek; Matthias J. Reddehase

Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as ‘viral latency’. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by ‘antigenicity-determining transcripts expressed in latency (ADTELs)’ sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315–331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase ‘memory inflation.’ Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to ‘memory inflation.’


Journal of Virology | 2008

Transactivation of Cellular Genes Involved in Nucleotide Metabolism by the Regulatory IE1 Protein of Murine Cytomegalovirus Is Not Critical for Viral Replicative Fitness in Quiescent Cells and Host Tissues

Vanessa Wilhelmi; Christian O. Simon; Jürgen Podlech; Verena Böhm; Torsten Däubner; Simone F. Emde; Dennis Strand; Angélique Renzaho; Niels A. W. Lemmermann; Christof K. Seckert; Matthias J. Reddehase; Natascha K. A. Grzimek

ABSTRACT Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-ΔIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-ΔIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate.


Medical Microbiology and Immunology | 2008

Hematopoietic stem cell transplantation with latently infected donors does not transmit virus to immunocompromised recipients in the murine model of cytomegalovirus infection.

Christof K. Seckert; Angélique Renzaho; Matthias J. Reddehase; Natascha K. A. Grzimek

Hematopoietic stem cell transplantation (HSCT) bears a risk of reactivating latent cytomegalovirus (CMV) in either the transplanted hematopoietic donor cells or in parenchymal and stromal tissue cells of the immunocompromised recipient, or in both. While reactivated human CMV in recipients of organ transplantations is frequently the virus variant of the donor, this is not usually the case in HSCT recipients. Here we have used experimental sex-mismatched HSCT in the BALB/c mouse model to test if latent murine CMV from CMV-immune donors is transmitted with bone marrow cells to naive immunocompromised recipients.


Journal of Virology | 2009

Immune Evasion Proteins Enhance Cytomegalovirus Latency in the Lungs

Verena Böhm; Christof K. Seckert; Christian O. Simon; Doris Thomas; Angélique Renzaho; Dorothea Gendig; Rafaela Holtappels; Matthias J. Reddehase

ABSTRACT CD8 T cells control cytomegalovirus (CMV) infection in bone marrow transplantation recipients and persist in latently infected lungs as effector memory cells for continuous sensing of reactivated viral gene expression. Here we have addressed the question of whether viral immunoevasins, glycoproteins that specifically interfere with antigen presentation to CD8 T cells, have an impact on viral latency in the murine model. The data show that deletion of immunoevasin genes in murine CMV accelerates the clearance of productive infection during hematopoietic reconstitution and leads to a reduced latent viral genome load, reduced latency-associated viral transcription, and a lower incidence of recurrence in lung explants.


Journal of General Virology | 2009

Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues

Kai A. Kropp; Christian O. Simon; Annette Fink; Angélique Renzaho; Birgit Kühnapfel; Jürgen Podlech; Matthias J. Reddehase; Natascha K. A. Grzimek

Major immediate-early (MIE) transcriptional enhancers of cytomegaloviruses are key regulators that are regarded as determinants of virus replicative fitness and pathogenicity. The MIE locus of murine cytomegalovirus (mCMV) shows bidirectional gene-pair architecture, with a bipartite enhancer flanked by divergent core promoters. Here, we have constructed recombinant viruses mCMV-DeltaEnh1 and mCMV-DeltaEnh2 to study the impact of either enhancer component on bidirectional MIE gene transcription and on virus replication in cell culture and various host tissues that are relevant to CMV disease. The data revealed that the two unipartite enhancers can operate independently, but synergize in enhancing MIE gene expression early after infection. Kick-start transcription facilitated by the bipartite enhancer configuration, however, did not ultimately result in accelerated virus replication. We conclude that virus replication, once triggered, proceeds with a fixed speed and we propose that synergism between the components of the bipartite enhancer may rather increase the probability for transcription initiation.


Medical Microbiology and Immunology | 2012

Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells

Stefan Ebert; Niels A. W. Lemmermann; Doris Thomas; Angélique Renzaho; Matthias J. Reddehase; Rafaela Holtappels

Adoptive transfer of virus-specific donor-derived CD8 T cells is a therapeutic option to prevent cytomegalovirus (CMV) disease in recipients of hematopoietic cell transplantation. Due to their high coding capacity, human as well as animal CMVs have the potential to encode numerous CD8 T cell epitopes. Although the CD8 T cell response to CMVs is indeed broadly specific in that it involves epitopes derived from almost every open reading frame when tested for cohorts of immune CMV carriers representing the polymorphic MHC/HLA distribution in the population, the response in any one individual is directed against relatively few epitopes selected by the private combination of MHC/HLA alleles. Of this individually selected set of epitopes, few epitopes are ‘immunodominant’ in terms of magnitude of the response directed against them, while others are ‘subdominant’ according to this definition. In the assumption that ‘immunodominance’ indicates ‘relevance’ in antiviral control, research interest was focused on the immunodominant epitopes (IDEs) and their potential use in immunotherapy and in vaccines. The murine model has provided ‘proof of concept’ for the efficacy of CD8 T cell therapy of CMV infection. By experimental modulation of the CD8 T cell ‘immunome’ of murine CMV constructing an IDE deletion mutant, we have used this established cytoimmunotherapy model (a) for evaluating the actual contribution of IDEs to the control of infection and (b) for answering the question whether antigenicity-determining codon polymorphisms in IDE-encoding genes of CMV strains impact on the efficacy of CD8 T cell immunotherapy in case the donor and the recipient harbor different CMV strains.


Medical Microbiology and Immunology | 2015

Identification of an atypical CD8 T cell epitope encoded by murine cytomegalovirus ORF-M54 gaining dominance after deletion of the immunodominant antiviral CD8 T cell specificities

Rafaela Holtappels; Niels A. W. Lemmermann; Doris Thomas; Angélique Renzaho; Matthias J. Reddehase

Control of murine cytomegalovirus (mCMV) infection is mediated primarily by CD8 T cells, with four specificities dominating in BALB/c mice. Functional deletion of the respective immunodominant epitopes (IDEs) in mutant virus Δ4IDE revealed a still efficient control of infection. In a murine model of hematopoietic cell transplantation and infection with Δ4IDE, an mCMV-specific open reading frame (ORF) library screening assay indicated a strong CD8 T cell reactivity against the ORF-M54 product, the highly conserved and essential mCMV homolog of human CMV DNA polymerase UL54, which is a known inducer of in vivo protection against mCMV by DNA immunization. Applying bioinformatic algorithms for CD8 T cell epitope prediction, the top-scoring peptides were used to stimulate ex vivo-isolated CD8 T cells and to generate cytolytic T cell lines; yet, this approach failed to identify M54 epitope(s). As an alternative, a peptide library consisting of 549 10-mers with an offset of two amino acids (aa), covering the complete aa-sequence of the M54 protein, was synthesized and used for the stimulation. A region of 12 aa proved to encompass an epitope. An ‘alanine walk’ over this antigenic 12-mer and all possible 11-, 10- and 9-mers derived thereof revealed aa-residues critical for antigenicity, and terminal truncations identified the H-2Dd presented 8-mer M5483–90 as the optimal epitope. An increased frequency of the corresponding CD8 T cells in the absence of the 4 IDEs indicated immunodomination by the IDE-specific CD8 T cells as a mechanism by which the generation of M54-specific CD8 T cells is inhibited after infection with wild-type mCMV.


Viruses | 2013

The p36 Isoform of Murine Cytomegalovirus m152 Protein Suffices for Mediating Innate and Adaptive Immune Evasion

Annette Fink; Angélique Renzaho; Matthias J. Reddehase; Niels A. W. Lemmermann

The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface.


Journal of Virology | 2009

Liver Sinusoidal Endothelial Cells Are a Site of Murine Cytomegalovirus Latency and Reactivation

Christof K. Seckert; Angélique Renzaho; Hanna-Mari Tervo; Claudia Krause; Petra Deegen; Birgit Kühnapfel; Matthias J. Reddehase; Natascha K. A. Grzimek

Collaboration


Dive into the Angélique Renzaho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge