Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelo R. Tomé is active.

Publication


Featured researches published by Angelo R. Tomé.


Biochimica et Biophysica Acta | 2011

Adenosine receptors and brain diseases: neuroprotection and neurodegeneration.

Catarina Gomes; Manuella P. Kaster; Angelo R. Tomé; Paula Agostinho; Rodrigo A. Cunha

Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinsons or Alzheimers disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.


The Journal of Physiology | 1998

Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics.

Rui M. Barbosa; Amélia M. Silva; Angelo R. Tomé; Jonathan A. Stamford; Rosa M. Santos; Luís M. Rosário

1 Glucose‐induced insulin release from single islets of Langerhans is pulsatile. We have investigated the correlation between changes in cytosolic free calcium concentration ([Ca2+]i) and oscillatory insulin secretion from single mouse islets, in particular examining the basis for differences in secretory responses to intermediate and high glucose concentrations. Insulin release was monitored in real time through the amperometric detection of the surrogate insulin marker 5‐hydroxytryptamine (5‐HT) via carbon fibre microelectrodes. The [Ca2+]i was simultaneously recorded by whole‐islet fura‐2 microfluorometry. 2 In 82 % of the experiments, exposure to 11 mM glucose evoked regular high‐frequency (average, 3.4 min−1) synchronous oscillations in amperometric current and [Ca2+]i. In the remaining experiments (18 %), 11 mM glucose induced an oscillatory pattern consisting of high‐frequency [Ca2+]i oscillations that were superimposed on low‐frequency (average, 0.32 min−1) [Ca2+]i waves. Intermittent high‐frequency [Ca2+]i oscillations gave rise to a similar pattern of pulsatile 5‐HT release. 3 Raising the glucose concentration from 11 to 20 mM increased the duration of the steady‐state [Ca2+]i oscillations without increasing their amplitude. In contrast, both the duration and amplitude of the associated 5‐HT transients were increased by glucose stimulation. The amount of 5‐HT released per secretion cycle was linearly related to the duration of the underlying [Ca2+]i oscillations in both 11 and 20 mM glucose. The slopes of the straight lines were identical, indicating that there is no significant difference between the ability of calcium oscillations to elicit 5‐HT/insulin release in 11 and 20 mM glucose. 4 In situ 5‐HT microamperometry has the potential to resolve the high‐frequency oscillatory component of the second phase of glucose‐induced insulin secretion. This component appears to reflect primarily the duration of the underlying [Ca2+]i oscillations, suggesting that glucose metabolism and/or access to glucose metabolites is not rate limiting to fast pulsatile insulin release.


Journal of Neurochemistry | 2011

Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction

Nelson Rebola; Ana Patrícia Simões; Paula M. Canas; Angelo R. Tomé; Geanne Matos de Andrade; Claire E. Barry; Paula Agostinho; Marina A. Lynch; Rodrigo A. Cunha

J. Neurochem. (2011) 117, 100–111.


Frontiers in Neuroscience | 2015

ATP as a multi-target danger signal in the brain.

Ricardo J. Rodrigues; Angelo R. Tomé; Rodrigo A. Cunha

ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.


Science Translational Medicine | 2013

Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice

Carla G. Silva; Christine Métin; Walid Fazeli; Nuno J. Machado; Sanja Darmopil; Pierre Launay; Antoine Ghestem; Marie Pascale Nesa; Emilie Bassot; Eszter Szabó; Younis Baqi; Christa E. Müller; Angelo R. Tomé; Anton Ivanov; Dirk Isbrandt; Yuri Zilberter; Rodrigo A. Cunha; Monique Esclapez; Christophe Bernard

Exposure to adenosine receptor antagonists in utero affects fetal brain development in mice. Adenosine Receptor Antagonists and Fetal Brain Development Neural development is strongly influenced by environmental factors including certain drugs. Little information is available about the effects of adenosine receptor antagonists such as caffeine on neural development. To address this question, Silva et al. added caffeine to the drinking water of female mice throughout pregnancy and lactation. They found that caffeine or an adenosine receptor antagonist that specifically blocks type 2A adenosine receptors delayed the migration of specific populations of neurons during brain maturation, resulting in their delayed insertion into target regions. They then showed that 1-week-old offspring of pregnant mice treated with adenosine receptor antagonists were more susceptible to seizures when exposed to a seizure-inducing agent. They further demonstrated that adult offspring of pregnant mice treated with adenosine receptor antagonists had reduced numbers of certain neuronal types as well as impaired memory on certain types of memory tests. This study raises questions about the effects of adenosine receptor antagonists including caffeine on brain development in humans. Retrospective and longitudinal prospective human studies will be needed to evaluate the consequences of caffeine consumption during pregnancy. Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to caffeine, a naturally occurring adenosine receptor antagonist, during pregnancy and lactation. We observed delayed migration and insertion of γ-aminobutyric acid (GABA) neurons into the hippocampal circuitry during the first postnatal week in offspring of dams treated with the A2AR antagonist or caffeine. This was associated with increased neuronal network excitability and increased susceptibility to seizures in response to a seizure-inducing agent. Adult offspring of mouse dams exposed to A2AR antagonists during pregnancy and lactation displayed loss of hippocampal GABA neurons and some cognitive deficits. These results demonstrate that exposure to A2AR antagonists including caffeine during pregnancy and lactation in rodents may have adverse effects on the neural development of their offspring.


Neurobiology of Disease | 2015

Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models.

Wei Li; Henrique B. Silva; Joana I. Real; Yumei Wang; Daniel Rial; Ping Li; Marie-Pierce Payen; Yuan-Guo Zhou; Christa E. Muller; Angelo R. Tomé; Rodrigo A. Cunha; Chen J

Cognitive impairments in Huntingtons disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.


Pflügers Archiv: European Journal of Physiology | 1994

Single-cell fura-2 microfluorometry reveals different purinoceptor subtypes coupled to Ca2+ influx and intracellular Ca2+ release in bovine adrenal chromaffin and endothelial cells.

Enrique Castro; Angelo R. Tomé; María Teresa Miras-Portugal; Luís M. Rosário

ATP and adenosine(5′)tetraphospho(5′)adenosine (Ap4A), released from adrenal chromaffin cells, are potent stimulators of endothelial cell function. Using single-cell fura-2 fluorescence recording techniques to measure free cytosolic Ca2+ concentration ([Ca2+]i), we have investigated the role of purinoceptor subtypes in the activation of cocultured chromaffin and endothelial cells. ATP evoked concentration-dependent [Ca2+]i rises (EC50=3.8 μM) in a subpopulation of chromaffin cells. Both ATP-sensitive and -insensitive cells were potently activated by nicotine, bradykinin and muscarine. Reducing extracellular free Ca2+ concentration to around 100 nM suppressed the [Ca2+]i transient evoked by ATP but not the [Ca2+]i response to bradykinin. ATP-sensitive chromaffin cells were also potently stimulated by 2-methylthioadenosine triphosphate (2MeSATP; EC50= 12.5 μM) and UTP, but did not respond to either adenosine 5′-[β-thio]diphosphate (ADP[βS]), a P2Y receptor agonist, adenosine 5′-[α,β-methylene]triphosphate (pp[CH2]pA), a P2X agonist or AMP. Adrenal endothelial cells displayed concentration-dependent [Ca2+]i responses when stimulated with ATP (EC50=0.86 μM), UTP (EC50=1.6 μM) and 2MeSATP (EC50= 0.38 μM). 2MeSATP behaved as a partial agonist. Ap4A and ADP[βS] also raised the [Ca2+]i in endothelial cells, whereas AMP and pp[CH2]pA were ineffective. Lowering extracellular free Ca2+ to around 100 nM did not affect the peak ATP-evoked [Ca2+]i rise in these cells. It is concluded that different purinoceptor subtypes are heterogeneously distributed among the major cell types of the adrenal medulla. An intracellular Ca2+-releasing P2U-type purinoceptor is specifically localized to adrenal endothelial cells, while a subpopulation of chromaffin cells expresses a non-P2X, non-P2Y subtype exclusively coupled to Ca2+ influx.


PLOS ONE | 2014

Behavioral Phenotyping of Parkin-Deficient Mice: Looking for Early Preclinical Features of Parkinson's Disease

Daniel Rial; Adalberto A. Castro; Nuno G. Machado; Pedro Garção; Francisco Gonçalves; Henrique B. Silva; Angelo R. Tomé; Attila Köfalvi; Olga Corti; Rita Raisman-Vozari; Rodrigo A. Cunha; Rui Daniel Prediger

There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinsons disease (PD) begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin −/−) to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin −/− mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination), anxiety (elevated plus-maze), depressive-like behavior (forced swimming and tail suspension) and motor function (rotarod, grasping strength and pole). However, parkin −/− mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP). These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin −/− mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.


Journal of Neuroinflammation | 2012

Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway

Ana Patrícia Simões; João A Duarte; Fabienne Agasse; Paula M. Canas; Angelo R. Tomé; Paula Agostinho; Rodrigo A. Cunha

Background and purposeBlockade of adenosine A2A receptors (A2AR) affords robust neuroprotection in a number of brain conditions, although the mechanisms are still unknown. A likely candidate mechanism for this neuroprotection is the control of neuroinflammation, which contributes to the amplification of neurodegeneration, mainly through the abnormal release of pro-inflammatory cytokines such as interleukin(IL)-1β. We investigated whether A2AR controls the signaling of IL-1β and its deleterious effects in cultured hippocampal neurons.MethodsHippocampal neuronal cultures were treated with IL-1β and/or glutamate in the presence or absence of the selective A2AR antagonist, SCH58261 (50 nmol/l). The effect of SCH58261 on the IL-1β-induced phosphorylation of the mitogen-activated protein kinases (MAPKs) c-Jun N-terminal kinase (JNK) and p38 was evaluated by western blotting and immunocytochemistry. The effect of SCH58261 on glutamate-induced neurodegeneration in the presence or absence of IL-1β was evaluated by nucleic acid and by propidium iodide staining, and by lactate dehydrogenase assay. Finally, the effect of A2AR blockade on glutamate-induced intracellular calcium, in the presence or absence of IL-1β, was studied using single-cell calcium imaging.ResultsIL-1β (10 to 100 ng/ml) enhanced both JNK and p38 phosphorylation, and these effects were prevented by the IL-1 type 1 receptor antagonist IL-1Ra (5 μg/ml), in accordance with the neuronal localization of IL-1 type 1 receptors, including pre-synaptically and post-synaptically. At 100 ng/ml, IL-1β failed to affect neuronal viability but exacerbated the neurotoxicity induced by treatment with 100 μmol/l glutamate for 25 minutes (evaluated after 24 hours). It is likely that this resulted from the ability of IL-1β to enhance glutamate-induced calcium entry and late calcium deregulation, both of which were unaffected by IL-1β alone. The selective A2AR antagonist, SCH58261 (50 nmol/l), prevented both the IL-1β-induced phosphorylation of JNK and p38, as well as the IL-1β-induced deregulation of calcium and the consequent enhanced neurotoxicity, whereas it had no effect on glutamate actions.ConclusionsThese results prompt the hypothesis that the neuroprotection afforded by A2AR blockade might result from this particular ability of A2AR to control IL-1β-induced exacerbation of excitotoxic neuronal damage, through the control of MAPK activation and late calcium deregulation.


European Journal of Pharmacology | 1993

Neomycin blocks dihydropyridine-insensitive Ca2+ influx in bovine adrenal chromaffin cells

Carlos B. Duarte; Angelo R. Tomé; Erik J. Forsberg; Caetana M. Carvalho; Arsélio P. Carvalho; Rosa M. Santos; Luís M. Rosário

There is evidence that bovine adrenal chromaffin cells are provided with both dihydropyridine-sensitive and -resistant voltage-sensitive Ca2+ influx pathways. Although recent electrophysiological work indicates that the dihydropyridine-resistant pathway is partially mediated by omega-conotoxin-sensitive and -insensitive Ca2+ channels, the pharmacological sensitivity of the latter channels remains elusive. We have now found that combined incubations with nitrendipine (1 microM) and neomycin (0.5 mM) reduced high K+ (50 mM)-evoked intracellular Ca2+ concentration ([Ca2+]i) transients to a larger extent than each drug separately. [Ca2+]i was measured using the fluorescent intracellular Ca2+ indicator fura-2. Neomycin (0.05-2 mM) reduced high K(+)-evoked 45Ca2+ uptake in a dose-dependent manner (IC50 = 0.09 mM). In the presence of nitrendipine (1 microM), the minimal neomycin concentration necessary for total blockade of 45Ca2+ uptake was reduced to 0.3 mM. Moreover, in the absence of nitrendipine the 45Ca2+ uptake remaining in 0.3 mM neomycin (26% of maximum) was similar to the fractional inhibition by nitrendipine alone (29%). Neomycin (0.05-2 mM) inhibited the [Ca2+]i transient induced by the L-type Ca2+ channel agonist Bay K 8644 (1 microM) much more extensively at 2 mM than at 0.3 mM (percent inhibition = 59% and 15%, respectively). Neomycin (0.05-2 mM) blocked high K(+)-evoked noradrenaline and adrenaline release in a dose-dependent fashion (IC50 = 0.8-1.1 mM), the blockade efficiency being enhanced in the presence of 1 microM nitrendipine (IC50 = 0.17-0.19 mM). It is concluded that neomycin (< or = 0.3 mM) blocks preferentially the dihydropyridine-insensitive Ca2+ influx pathway of the chromaffin cell. Moreover, both the dihydropyridine-sensitive and the dihydropyridine-resistant, neomycin-sensitive Ca2+ influx pathways contribute strongly to depolarization-evoked catecholamine secretion.

Collaboration


Dive into the Angelo R. Tomé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge